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General introduction

Nonparametric production analysis supplements observed input-output combinations
with a number of assumptions to model the production process. Notwithstanding its
simple basic premises, this black box analysis is quite powerful and has low data require-
ments. However, it can be made even more powerful by opening up this black box. The
common thread in this thesis is to go beyond this black box modeling. “Beyond black
box modeling” here refers to two interpretations. The first and conventional interpreta-
tion refers to more realistic models of production processes by, for example, explicitly
modeling the different subprocesses and their links (cfr. Chapter 2) or by modeling
intertemporal links between processes over time (cfr. Chapter 4). Apart from this con-
ventional interpretation, it also refers to the idea of looking beyond mere efficiency scores
or productivity measures produced by these black box models. An equally important
analysis is tracing the underlying factors of these results (cfr. Chapters 2 and 3) and
learning from dominating peers (cfr. Chapter 5). This thesis contributes to the existing
literature on nonparametric productivity and efficiency analysis in a number of ways.

We first start with a brief crash course in nonparametric production analysis in
Chapter 1. This chapter is designed to be self-contained and to acquaint the reader
with all the necessary tools to understand the following chapters.

It has long been known that the average cost of production, defined as total cost
divided by quantity produced, can be reduced by increasing the scale of production (i.e.,
economies of scale) or by synergies in production (i.e., economies of scope). Either of
both choices has its advantages and drawbacks. In agriculture there is a tendency to spe-
cialize which is actively promoted by governments. The majority of the existing studies
in the efficiency and productivity literature treat agricultural production as a black box
where the subprocesses are overlooked. This hampers comparison of mixed and speciali-
zed farms to assess whether some reallocation among the different farming activities can
be fruitful and how this reallocation could improve productivity over time. Chapter 2

contributes to the literature by introducing a nonparametric measure of “coordination
productivity growth” where the subprocesses are explicitly modeled in the production
technology. Put differently: we open up the black box of farming activities by modeling
both the crop and livestock activities separately and how both interact. Coordination
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x GENERAL INTRODUCTION

productivity growth then measures the additional potential gain in productivity by real-
locating resources between crop and livestock activities. The coordination productivity
indicator is decomposed into a coordination technical inefficiency change component and
a coordination technical change component. This decomposition allows assessment of
reallocation impacts on the different sources of productivity growth. The empirical ap-
plication focuses on a large panel of English and Welsh farms over the period 2007−2013.
The results show that coordination inefficiency significantly increases with the propor-
tion of resources allocated to livestock production in economic and statistical terms.
Coordination inefficient farms should generally allocate more land to crop production.

The decomposition of total factor productivity is usually concerned with the under-
lying drivers. These underlying drivers tell us to what extent, for example, productivity
growth is due to improved technology, efficiency improvement, or changes in returns-
to-scale. However, in general, total factor productivity indicators (indexes) cannot be
disentangled into components of aggregate output change and aggregate input change.
Thus, one cannot measure to what extent total factor productivity growth (decline) is
due to expansion (decline) in aggregate output and decline (expansion) in aggregate
input. Productivity indicators (indexes) which do posses this property are said to be
“additively (multiplicatively) complete”. Chapter 3 contributes to the literature by in-
troducing a decomposition of the additively complete Luenberger-Hicks-Moorsteen total
factor productivity indicator into the usual components: technical change, technical inef-
ficiency change and scale inefficiency change. Our approach is general in that it does not
require differentiability or convexity of the production technology. Therefore, it is appli-
cable to a wide variety of production technologies. Using a nonparametric framework,
the empirical application focuses on the agricultural sector at the state-level in the U.S.
over the period 1960 − 2004. The results show that Luenberger-Hicks-Moorsteen total
factor productivity increased substantially in the considered period. This productivity
growth is due to output growth rather than input decline, although the extent depends
on the convexity assumption of the technology. Technical change is the main driver,
while the role of technical inefficiency change and scale inefficiency change also depends
on the convexity assumption of the technology.

Production at one point in time is not independent of earlier production. Many in-
puts influence production over many future time periods. This has long been recognized
and studied in the literature. However, much of this literature has focused on dyna-
mically efficient production behavior from a technical perspective (i.e., through explicit
modeling of the production process). By contrast, far less work has tackled the issue
from an economic perspective (i.e., through behavioral modeling of firms’ operations).
Chapter 4 proposes a nonparametric methodology for intertemporal production analy-
sis that accounts for durable as well as storable inputs. Durable inputs contribute to the
production outputs in multiple consecutive periods. Storable inputs are non-durable and
can be stored in inventories for use in future periods. We explicitly model the possibility
that firms use several vintages of the durable inputs, i.e., they invest in new durables
and scrap older durables over time. Furthermore, we allow for production delays of
durable inputs. We characterize production behavior that is dynamically cost efficient,
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which allows us to evaluate the efficiency of observed production decisions. For cost
inefficient behavior, we propose a measure to quantify the degree of inefficiency. An
attractive feature of this measure is that it can be decomposed in period-specific cost
inefficiencies. We demonstrate the usefulness of our methodology through an application
on Swiss railway companies.

In empirical applications of efficiency and productivity analysis an often disregarded
aspect is the direction in which to project onto the production frontier. Although some
literature started focusing on choosing this direction in some optimal way, perhaps the
most common choice is the radial direction. However, little attention is paid to the ma-
nagerial interpretations of such a choice. Furthermore, empirical applications often focus
exclusively on modeling the production process and computing efficiency/productivity.
The analysis often stops there even though the next step is equally – perhaps even more
– important: what are the important peers? From which should a specific DMU learn?
Chapter 5 attempts to tackle both issues. As a by product of efficiency computations
we have a matrix of intensity variables. This matrix represents a graph showing the domi-
nating peers that make up the (artificial) benchmark DMU for every DMU. We propose
to identify the key DMUs in the DMU network by varying the direction vectors and
aggregating these matrices of intensity variables. The key DMUs are then those DMUs
with the largest eigenvector centrality which is computed from the eigenvalue decompo-
sition of this aggregate matrix of intensity variables. Through a comparative analysis
we identify key objectives from the key DMUs characteristics. These key objectives are
used as direction vectors in subsequent analysis.

Once efficiency scores are computed and dominating peers are identified for a given
DMU, we need to analyze these individual dominating peers to determine what one can
learn from them. Visualizing these dominating peers in comparison to the benchmarked
DMU can simplify the task at hand. We are not aware of any visualization tool in
the literature that allows to quickly compare DMUs in terms of their input-output mix
and scale. Therefore, we further propose a visualization tool to compare dominating
peers with the benchmarked DMU in terms of input-output mix and scale. Our tool
is easy to compute and allows to quickly visualize all dominating peers in comparison
to a benchmarked DMU and can complement, for example, radar plots. Thus, the tool
enriches the toolbox of efficiency analysis and helps in moving beyond the conventional
analysis.

Each of these chapters was originally conceived as separate papers and the chapters
are therefore self-contained. This also means that some of the arguments and definitions
are repeated in some of the chapters and notation can differ over the chapters. We
next turn to a basic introduction of production theory. The focus is on nonparametric
techniques to analyze production behavior. This should familiarize the reader with the
tools used throughout this thesis.





Chapter 1

Introduction: A crash course on

nonparametric analysis of production
“The neoclassical theory of production postulates that firms maximize pro-
fits (and minimize costs) subject to certain technological constraints. . . . The
conventional analysis of these questions proceeds by first postulating a para-
metric form for the production function (or some equivalent parametric re-
presentation of the technology) and then using standard statistical techniques
to estimate the unknown parameters from the observed data. This procedure
suffers from the defect that the maintained hypothesis of parametric form can
never be directly tested: it must be taken on faith.”

— Hal R. Varian1

Efficiency analysis and productivity is the main object of interest in this thesis. Before
turning to the contributions in this thesis it is useful to provide a “crash course” on the
basic concepts that are used in the following chapters. Thus, this chapter should equip
the reader with the necessary tools to dive into the following chapters. We introduce
basic technical concepts and do a limited literature review so that this thesis is self-
contained. But, our goal is not to be exhaustive. To focus our discussion, a selection
is made and we refer interested readers to the books of, for example, Fried et al. (1993)
and Färe and Primont (1995) for a more in depth discussion.

1.1 Introduction

In a production context, nonparametric analysis refers to the tradition of the axiomatic
production theory in line of Farrell (1957), Shephard (1970), Afriat (1972) and Varian
(1984). Axiomatic production theory starts from a minimal set of axioms to characterize
the production possibilities set and some behavioral assumptions. In contrast, parame-
tric methods of production analysis posit a specific functional form for the technology
and an additive composite stochastic error term. This stochastic composite error term

1Varian (1984, p.579)
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captures both inefficiency and measurement error. They frequently proceed by further
assuming a specific distribution for both error terms and then estimating the technology
through econometric estimation. Their advantage is the natural way in which various
forms of uncertainty are handled while their main disadvantage is clearly the high risk
of functional form misspecification. This is largely avoided by nonparametric methods
we employ in this thesis: the functional form is not imposed a priori but is determined
from the data itself. In this way the “data speaks for itself”. An important caveat is
that nonparametric methods can still suffer from misspecification e.g., due to outliers,
the data generating process and dynamic misspecification (e.g., Kasparis and Phillips
(2012)).

Farrell (1957)’s seminal work laid the foundation for modern efficiency analysis. He
proposed to envelop the data to provide a conservative estimate of the production pos-
sibilities set. Then, he defined “technical efficiency” as the maximal output that could
be produced for a given inputs. Similarly, “price efficiency” (or cost efficiency) was de-
fined. Both proposed efficiency measures were ratio based so as to give them an easy
interpretation. Shephard (1970) provided a formal axiomatic framework to characterize
production. Following the ideas of Farrell and Shephard, Charnes et al. (1978) provided
an easy implementable linear programming formulation of what has become known as
Data Envelopment Analysis (DEA). Their method also has the advantage of being able
to deal straightforwardly with multiple inputs and multiple outputs. Building on work
by Afriat (1972), Hanoch and Rothschild (1972) and Diewert and Parkan (1983), Varian
(1984) showed how to test cost minimizing behavior by means of the “Weak Axiom of
Cost Minimization” (WACM) by assuming free disposability of inputs, nestedness of
input requirement sets and cost minimizing behavior. One can then determine how far
a firm deviates from cost minimizing behavior by measuring cost efficiency as a ratio of
minimal cost over observed cost such as proposed by Farrell. Varian proposed a similar
test for profit maximization and showed how to recover information about the under-
lying technology from cost minimizing or profit maximizing behavior. Finally, Banker
and Maindiratta (1988) extend Varian’s work and show the link with DEA models.

1.1.1 The firm’s objective: the pursuit of profit

In line with the neo-classical framework one frequently assumes that firms are price
takers; that one firm cannot influence the market price (“atomism”) and that it operates
in a market with perfect competition. Let Z = (−X, Y) ∈ R

n
− ×R

m
+ be a “netput” vector

where inputs are assumed negative and outputs positive. The firm’s profit maximization
problem can then be stated as (Mas-Colell et al., 1995):

max
Z

P · Z′ (1.1a)

s.t. F (Z) ≤ 0, (1.1b)

where the transformation function F (·) is differentiable and has the property that F (Z∗) =
0 for all points Z∗ on the boundary. F (·) represents the production technology. The
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production trade-off at the boundary between any two netputs l and k is given by the
marginal rate of transformation (MRT). The MRT shows the marginal change in netput
k due to a marginal change in netput l. The MRT is found by totally differentiating
F (Z∗) = 0

∂F (Z∗)

∂Z∗l
dZ∗l +

∂F (Z∗)

∂Z∗k
dZ∗k = 0,

and rearranging terms:

MRTk,l ≡ dZ∗k

dZ∗l
= −

∂F (Z∗)
∂Zl∗

∂F (Z∗)
∂Zk∗

. (1.2)

From the first order conditions of optimality for (1.1) we know that an optimal
solution Z∗ must satisfy

P = λ · ∇F (Z∗),

for some λ ≥ 0. Then, for any netput l and k we have

P l

P k
=

∂F (Z∗)
∂Zl∗

∂F (Z∗)
∂Zk∗

= −MRTk,l. (1.3)

Thus, under profit maximizing behavior the ratio of prices equals minus the margi-
nal rate of transformation. This relation forms the fundamental building block to (i)
reconstruct the technology set from observed profit maximizing choices and (ii) recover
relative “shadow” prices from knowledge of the technology set.

Figure 1.1 illustrates the above graphically for the case of two inputs holding output
constant. The dots are the observed input combinations to produce the output Y. The
dotted lines are the prices faced in the different situations (e.g., different firms with
different prices or single firm over time). Under profit maximization we know that these
relative prices are tangent to the technology frontier. Thus, an “outer” approximation
of the technology set is then marked by the different relative prices. Conversely, given
different input combinations and knowledge of the technology set I(Y), we can estimate
the relative prices a profit maximizing firm would have faced.

The remaining parts of this chapter serve first to introduce an axiomatic approach
to reconstruct the technology set in the absence of price information and the measu-
rement of technical efficiency. The second part then discusses a nonparametric way of
testing “economic optimizing” (e.g., profit maximizing or cost minimizing) behavior with
minimal assumptions regarding the underlying technology. The third section demonstra-
tes how the two previous sections are linked together by duality. Finally, we discuss
measures of productivity before concluding in the final section.

1.2 Technical efficiency

The transformation function F (·) in (1.1) can also be represented through a production
set. The remaining part of this chapter uses this set representation of technology.
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b

b

b
b b b

I(Y)

X1

X2

P 1

P 2
−MRT2,1

Figure 1.1: Cost minimization: P 1

P 2 = −MRT2,1.

1.2.1 Set representation of technology

The production literature uses production possibilities sets as alternative representations
of technology. Let the technology set Y ⊂ R

n
+ × R

m
+ be defined as:

Y =
{

(X, Y) ∈ R
n+m
+ |X can produce Y

}

. (1.4)

This technology set simply collects all feasible input-output combinations. One can
take slices of this set by fixing the inputs or the outputs yielding the output sets

P(X) =
{
Y ∈ R

m
+ |X can produce Y

}
, (1.5)

and the input requirements set

I(Y) =
{

X ∈ R
n
+|X can produce Y

}

. (1.6)

The technology set is commonly assumed to satisfy the following axioms:

Axiom 1.1 (inaction). (0n, 0m) ∈ Y.

Axiom 1.2 (no free lunch). if (X, Y) ∈ Y and X = 0n, then Y = 0m.

Axiom 1.3 (closedness). Y is closed.

Axiom 1.4 (free disposability of inputs and outputs). (X, Y) ∈ Y and (X′, −Y′) ≥
(X, −Y) ⇒ (X′, Y′) ∈ Y.

Axiom 1.1 states that producing nothing is possible, while Axiom 1.2 states that
nothing must come out of nothing, i.e., there is no such thing as a free lunch. Axiom 1.3
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is a mathematical regularity property. Axiom 1.4 then states that disposal of inputs or
outputs is costless.2 In addition, often convexity of the technology set is assumed:

Axiom 1.5 (convexity). Y is a convex set: (X, Y) ∈ Y and (X′, Y′) ∈ Y ⇒ ∀λ ∈ [0, 1] :
λ(X, Y) + (1 − λ)(X′, Y)′ ∈ Y.

Convexity implies time or space divisibilities of inputs and outputs. It is often
perceived as innocuous, while in fact it is a quite stringent assumption on the underlying
production technology. In contrast, for economic efficiency convexity of the technology
set (input requirement set) does not alter profit efficiency (cost efficiency) evaluations
(cfr. Section 1.3). Examples of a hypothetical input requirement set and output set
satisfying the above axioms are depicted in Figure 1.2 and Figure 1.3.

A′

b

A

b

I(Y)

0
X1

X2

Figure 1.2: Input requirement set with an inefficient observation A and its weakly effi-
cient projection A′ on the frontier.

We remark that these production possibilities sets can also be defined over subsets of
the inputs and outputs. One example is Chapter 2 where we use subprocess production
possibilities sets to model different farming activities. Another example is the multi-
output production models of Cherchye et al. (2013, 2014) and Cherchye et al. (2016)

2There are many situations where this assumption is questionable: e.g., in the case of congestion
or pollution-generating activities. We refer to Dakpo et al. (2016) for an extensive review of different
approaches to model pollution-generating activities.
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A′
b

A
b

P(X)

0
Y 1

Y 2

Figure 1.3: Output set with an inefficient observation A and its weakly efficient pro-
jection A′ on the frontier.

where they model output-specific technologies which have their own output-specific in-
puts and joint inputs shared by every output. Naturally, these production possibilities
sets can have their own different set of axioms.

Intuitively, a firm is “technically efficient” if it produces the maximum amount for
all outputs with the minimal amount of all inputs (Koopmans, 1951). More formally, an
observation (X0, Y0) ∈ Y is “Pareto-Koopmans efficient” if

{(X, Y) ∈ Y |(X, −Y) ≤ (X0, −Y0)} = ∅.

The Pareto-Koopmans efficient frontier is characterized by

Eff Y ≡ {

(X, Y) ∈ Y| 6 ∃(X′, Y′) ∈ Y : (X′, −Y′) ≤ (X, −Y)
}

.

One can straightforwardly define similar Pareto-Koopmans efficient input require-
ment sets (output sets) by fixing outputs (inputs). Tone (2001)’s Slacks-Based Measure
(SBM) model is one example among many implementing a Pareto-Koopmans based effi-
ciency measure. Besides this “strong efficiency” notion, a firm can be “weakly efficient”
if it is not possible to simultaneously reduce all its inputs and expand all its outputs
proportionally by a common factor:

Isoq Y ≡
{

(X, Y) ∈ Y |∀θ ∈ [0, 1) :

(

θX,
Y

θ

)

/∈ Y

}

. (1.7)
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This technology set isoquant contains all weakly efficient input-output combinations.
The hyperbolic graph efficiency measure of Färe et al. (1985) implements this “weakly
efficient” notion by computing the radial distance to Isoq Y . Clearly, Eff Y ⊆ Isoq Y .
Similarly, isoquants for the input requirement set and the output set can be defined:

Isoq I(Y) ≡ {X ∈ I(Y)|∀θ ∈ [0, 1) : θX /∈ I(Y)} , (1.8)

Isoq P(X) ≡ {Y ∈ P(X)|∀θ ∈ (1, ∞) : θY /∈ P(X)} . (1.9)

These isoquants serve as the basis for Shephard (1970)’s distance functions to deter-
mine technical efficiency and quantify the deviation from technical efficiency. Graphi-
cally, these isoquants correspond to contraction (expansion) of all inputs (outputs) along
a ray originating in the origin. This is illustrated in Figure 1.2 as follows: the inefficient
observation A is contracted towards the origin until it reaches the frontier at point A′.
Figure 1.3 shows how the inefficient observation A is expanded along a ray through the
origin until it reaches the frontier at A′.

1.2.2 Measurement of efficiency

If a firm is not technically efficient then it is useful to measure the degree of inefficiency
and determine the technical efficient input-output combination. There are a wide variety
of different measurements of (in)efficiency. We only discuss those that straightforwardly
follow from our previous discussion.

The hyperbolic graph efficiency measure of Färe et al. (1985) measures the distance
of a given observation to the weakly efficient frontier (1.7) from the origin:

γ(X, Y) ≡ inf

{

γ|
(

γX,
Y

γ

)

∈ Isoq Y

}

. (1.10)

Similarly, Shephard (1970)’s input distance function computes the distance along a
ray from the origin to Isoq I(Y) while holding outputs constant:

θ(X, Y) ≡ sup

{

θ|
(

X

θ
, Y

)

∈ Isoq I(Y)

}

. (1.11)

This measure is equal to or larger than one. Analogously, Shephard (1970)’s output
distance function computes the distance along a ray from the origin to Isoq P(X) while
holding inputs constant:

δ(X, Y) ≡ inf

{

δ|
(

X,
Y

δ

)

∈ Isoq P(X)

}

. (1.12)

This output distance function is situated between zero and one. These distance me-
asures have in common that they compute the distance to the technology set along a
ray from the origin. However, nothing prevents us from choosing a different “direction”
of measurement. A more general distance function measuring (in)efficiency in a chosen



8 CHAPTER 1. CRASH COURSE ON NONPARAMETRIC PRODUCTION

direction is based on Luenberger (1992)’s shortage function. First introduced in a con-
sumption setting by Luenberger, it was then introduced by Chambers et al. (1996b) in
a production setting as the directional distance function:

D(X, Y; g) = sup
{

β ∈ R : (X − βgx, Y + βgy) ∈ Y
}

, (1.13)

where g = (gx, gy) ∈ R
n+m is the direction vector. Intuitively, D(X, Y; g) then projects

(X, Y) onto the boundary of the technology set by simultaneously scaling the inputs and
outputs in the chosen direction g by a common factor β.

Shephard’s distance functions (1.11) and (1.12) arise as special cases of (1.13). Spe-
cifically, D(X, Y; (X, 0m)) = 1 − θ(X, Y)−1 and D(X, Y; (0n, Y)) = δ(X, Y)−1 − 1.
Furthermore, the hyperbolic graph efficiency measure log γ−1(X∗, Y∗) over the transfor-
med production set

Y∗ =
{

(X∗, Y∗) = (exp(X./gx), exp(Y./gy)) ∈ R
n+m
+ |X can produce Y

}

can be shown to equal (1.13) (Simar and Vanhems, 2012). Here, ./ denotes element-wise
division.

Chambers et al. (1998, Lemma 2.2) prove the following properties of the directional
distance function:

Proposition 1.1. If Y satisfies Axiom 1.1–1.4, then D(X, Y; g) has the following pro-
perties:

(a) D(X − αgx, Y + αgy; g) = D(X, Y; g) − α;

(b) D(X, Y; g) is upper semicontinuous in X and Y (jointly);

(c) D(X, Y; αg) = 1
α

D(X, Y; g), α > 0;

(d) Y′ ≥ Y ⇒ D(X, Y′; g) ≤ D(X, Y; g);

(e) X′ ≥ X ⇒ D(X′, Y; g) ≥ D(X, Y; g);

(f) if Y is convex (i.e., Axiom 1.5), D(X, Y; g) is concave in (X, Y).

Property (a) is the translation invariance property showing that translating an obser-
vation in the direction of measurement results in a translation by the same factor of the
directional distance function evaluated on the original observation. In essence, Property
(b) means that the value of the directional distance function for arguments near (X, Y)
is equal to or lower than D(X, Y; g). This technical property is weaker than continuity.
Scaling the direction vector is equivalent to inversely scaling the original directional dis-
tance function (Property (c)). The directional distance function is monotone decreasing
in outputs and monotone increasing in inputs as denoted by Properties (d) and (e).
Finally, convexity of the technology set implies a concave directional distance function
(Property (f)).
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1.2.3 Empirical approximation of production sets

In practice, the production technology is not known to the empirical analyst and has
to be estimated from some data S = {(Xk, Yk)}k=1,...,K . Farrell (1957)’s seminal work
laid the foundation for modern efficiency analysis. He proposed to envelop the data
to provide a conservative estimate of the production possibilities set. Then, he defined
“technical efficiency” as the maximal output that could be produced for given inputs.
Shephard (1970) provided a formal axiomatic framework to characterize production and
his input (1.11) and output (1.12) distance functions, directly borrowed from Farell,
operationalize (1.8) and (1.9). Building on the ideas of Farrell and Shephard, Charnes
et al. (1978) provided an easy implementable linear programming (LP) formulation of
what has become known as DEA. Their method also has the advantage of being able to
easily deal with multiple inputs and multiple outputs.

In order to arrive at an empirical approximation of the technology set, one additional
axiom is required:

Axiom 1.6 (observability means feasibility). ∀(Xk, Yk) ∈ S ⇒ (Xk, Yk) ∈ Y.

Hence, we assume that all observations are measured without noise. The above
axioms can be supplemented with particular assumptions on returns-to-scale.

Axiom 1.7 (returns-to-scale). Y exhibits

• constant returns-to-scale (CRS): (X, Y) ∈ Y ⇒ (δX, δY) ∈ Y , ∀δ > 0;

• non-increasing returns-to-scale (NIRS): (X, Y) ∈ Y ⇒ (δX, δY) ∈ Y , ∀δ ∈ [0, 1];

• non-decreasing returns-to-scale (NDRS): (X, Y) ∈ Y ⇒ (δX, δY) ∈ Y , ∀δ ≥ 1;

• variable returns-to-scale (VRS): otherwise.

CRS means that an observation can be scaled up or down by any positive factor.
NIRS means that an observation can only be scaled down, while NDRS implies that an
observation can only be scaled up. Finally, VRS satisfies NIRS and NDRS in different
regions of the production possibilities set (Färe et al., 1994a). These different returns-
to-scale assumptions can be imposed to further strengthen the empirical bite of the
technology approximation, but imposing them can lead to misspecification error.

Extending Bogetoft (1996), Briec et al. (2004) provided a unified algebraic represen-
tation for the minimum extrapolating technology consistent with the data S (Axiom 1.6),
Axioms 1.3-1.4, the different returns to scale assumptions (Axiom 1.7) for both convex
(i.e., Axiom 1.5) and non-convex technologies:

YΛ,Γ =

{

(X0, Y0)|
K∑

k=1

δλkXk ≤ X0,
K∑

k=1

δλkYk ≥ Y0, λk ∈ Λ, δ ∈ Γ

}

, (1.14a)



10 CHAPTER 1. CRASH COURSE ON NONPARAMETRIC PRODUCTION

where

Λ ∈






NC =
{

λ ∈ R
K
+ |∑K

k=1 λk = 1, λk ∈ {0, 1}
}

;

C =
{

λ ∈ R
K
+ |∑K

k=1 λk = 1, λk ≥ 0
} (1.14b)

and

Γ ∈







V RS = {δ ∈ R+|δ = 1} ;

CRS = {δ ∈ R+|δ ≥ 0} ;

NIRS = {δ ∈ R+|0 ≤ δ ≤ 1} ;

NDRS = {δ ∈ R+|δ ≥ 1} .

(1.14c)

In contrast to other representations, this formulation has the advantage that the
returns to scale parameter δ is separate from the usual intensity variable λ. The returns
to scale parameters in Γ allow to scale the observations in line with the different returns
to scale assumptions of Axiom 1.7. The intensity variables λk serve as weights (i.e.,

their sum is one) to construct a benchmark observation
(
∑K

k=1 δλkXk,
∑K

k=1 δλkYk

)

as

a scaled, weighted sum of observed inputs and outputs. Convexity of the technology set
can be imposed by selecting C from Λ and allows to construct the (artificial) benchmark
observation as a convex combination of observed input-output combinations. Selecting
NC from Λ then boils down to selecting only one observed input-output combination
which is scaled by δ as the benchmark.

It should be noted that (1.14) only satisfies Axiom 1.1 when (0n, 0m) ∈ S and
Axiom 1.2 when, in addition, (0n, Yk) /∈ S with Yk > 0. Figure 1.4 shows inner approx-
imations for both the input requirements set and the output set. The dots represent
observations. The shaded area represents YC,V RS and imposes convexity while the das-
hed boundary represents YNC,V RS . We have YNC,Γ ⊆ YC,Γ.

The directional distance function is then simply computed by plugging YΛ,Γ in (1.13):

D(X0, Y0; g) =

{

max
β∈R,λ∈R

K
+

β s.t. (X0 − βgx, Y0 + βgy) ∈ YΛ,Γ

}

. (1.15)

This is a linear program when imposing convexity (i.e., Λ = C) and therefore can be
easily solved by standard LP solvers. To be concrete, the linear program one solves to
compute (1.13) on YC,Γ is

D(X0, Y0; g) =

{

max
β∈R,λ∈R

K
+

β s.t.
K∑

k=1

λkXk ≤ X0 − βgx,
K∑

k=1

λkYk ≥ Y0 + βgy, λk ∈ Γ

}

,

(1.16a)



1.2. TECHNICAL EFFICIENCY 11

b b

b b

b b

b b

b

Y 1

Y 2

P (X)

b
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b b

X1

X2

I(Y)

Figure 1.4: Convex (gray area) or free disposal hull (dashed lines) approximation of
output and input requirements set.
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with

Γ ∈







V RS =
{

λk ≥ 0|∑K
k=1 λk = 1

}

;

CRS = {λk ≥ 0} ;

NIRS =
{

λk ≥ 0|∑K
k=1 λk ≤ 1

}

;

NDRS =
{

λk ≥ 0|∑K
k=1 λk ≥ 1

}

.

(1.16b)

In this linear program δ and its constraints are merged into λ.
When not imposing convexity (i.e., Λ = NC), (1.15) is a mixed-integer programming

(MIP) problem. Leleu (2006) shows how this can be transformed into an LP formulation.
Conveniently, as first pointed out by Tulkens (1993) for Shephard distance functions, an
equivalent formulation exists which is solvable using simple enumeration methods. First,
one can use Simar and Vanhems (2012)’s transformation of the technology set:

Y∗NC,Γ =
{

(X∗, Y∗) ∈ R
n+m
+ |∃(X, Y) ∈ YNC,Γ : X∗ = exp(X./gx), Y∗ = exp(Y./gy)

}

,

before computing the hyperbolic distance function over Y∗NC,Γ by enumeration as descri-
bed in Briec and Kerstens (2006). For the VRS case (i.e., Γ = V RS), this enumeration
formulation is

γ(X∗, Y∗) = min
∀k=1,...,K:

X∗
k

≤X∗,Y∗
k

≥Y∗

(

max

{

max
i=1,...,n

(

X∗,i
k

X∗,i

)

, max
j=1,...,m

(

Y ∗,j

Y ∗,j
k

)})

.

Finally, log γ−1(X∗, Y∗) then yields the directional distance function computed over
technology YNC,V RS . Solving γ(X∗, Y∗) thus involves one loop over all observations
(X∗

k, Y∗
k) and checking whether they are dominating (X∗, Y∗). If they are dominating

then one computes the expression within brackets. These enumeration formulations are
easy to implement and considerable faster than an LP.

The above transformation assumes g > 0, but when some (gU
x , gV

y ) = (0|U |, 0|V |) for

U ⊆ {1, . . . , n} , V ⊆ {1, . . . , m} then X∗,U = XU and Y∗,V = YV (Daraio and Simar,
2014, Section 3.2). Unfortunately, if g < 0 then the above transformation cannot be
applied.3

Let us now turn to measuring economic efficiency under some behavioral optimizing
assumption while imposing minimal assumptions on the technology.

1.3 Economic efficiency

The previous section showed how one can reconstruct the technology set from a discrete
number of observations by imposing a number of plausible assumptions regarding the

3Cherchye et al. (2001) provide the only known enumeration algorithm which handles g < 0 for
Y

NC,V RS only.



1.3. ECONOMIC EFFICIENCY 13

technology. Thus, the goodness-of-fit of the approximation hinges on the validity of
these assumptions and the number of observations.

If price information is available to the empirical analyst then a different appro-
ach is possible that requires far less assumptions with regard to the technology at
the cost of assuming some economic optimizing behavior (e.g., profit maximization,
revenue maximization or cost minimization).4 In this section we turn to the ques-
tion whether there are any testable nonparametric implications on a discrete dataset
S = {(Wk, Yk, Pk, Xk)}k=1,...,K associated with economic (e.g., profit maximizing or
cost minimizing) optimizing behavior.

1.3.1 Profit maximization

We start with the hypothesis of profit maximization and further assume that a firm
cannot influence the market price (i.e., “atomism”); that it is a price taker and that it
operates in a market with perfect competition. Let us retake the formulation of (1.1)
and start with defining what profit maximization entails for a discrete dataset.

Definition 1.1 (p-rationality). A technology set Y p-rationalizes the observed behavior
{(Wk, Yk, Pk, Xk)}k=1,...,K if Wk · Y′

k − Pk · X′
k ≥ Wk · Y′ − Pk · X′ for all (X, Y) ∈ Y

for k = 1, . . . , K.

P-rationality simply requires that the observed choice (Xk, Yk) in situation k yields
maximum profit over all feasible choices (X, Y) within the technology set Y. The next
step is finding testable conditions implied by p-rationality.

Building on work by Afriat (1972); Hanoch and Rothschild (1972); Diewert and
Parkan (1983), Varian (1984) showed the following equivalence result:5

Theorem 1.1 (Weak Axiom of Profit Maximization (WAPM)). The following conditi-
ons are equivalent:

(1) There exists a technology set that p-rationalizes the data.

(2) Wi · Y′
i − Pi · X′

i ≥ Wi · Y′
j − Pi · X′

j for all i, j = 1, . . . , K.

(3) There exists a closed, convex, free disposal production set that p-rationalizes the
data.

Equivalence here means that testing any of the above statements should always give
the same result as testing any other of these statements. Thus, if the test of statement (2)

4This economic optimization problem is often multi-dimensional which further complicates perfor-
mance assessment. Public sector managers, in particular, face multiple objectives set by the state to
maximize social welfare. Pestieau and Tulkens (1993) argue: “Producing too little or employing too many

factors as compared to what is technically feasible cannot be justified in terms of any of the other objecti-

ves listed above.” Hence, they argue, technical efficiency is the only objective which does not impede the
achievement of the other social objectives. But, see Peters (1985) for a different opinion.

5Varian (1984) used the term “negative monotonic production set” which he admits is “essentially a
free disposal hypothesis” of inputs and outputs.
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on the dataset is positive, then this immediately implies that there exists an underlying,
unknown, technology consistent with statement (3). The elegance of this result is that,
apart from Axiom 1.6, statement (2) does not make any assumptions with regards to
the technology, but that a positive outcome of this test implies that we can reconstruct
this underlying technology by assuming Axioms 1.3-1.5 (cfr. statement (3)). Although
convexity is not assumed to check statement (2), the equivalent statement (3) states
that a convex production set exists which is associated with a p-rational dataset. Thus,
imposing convexity on the reconstructed underlying technology does not alter the result
of p-rationality.

The above can be operationalized as follows:

Π(Wk, Pk) =

{

max
(X,Y)∈S

Wk · Y′ − Pk · X′

}

− [
Wk · Y′

k − Pk · X′
k

] ≥ 0.

Profit efficiency is then marked by Π(Wk, Pk) = 0 while profit inefficiency Π(Wk, Pk)
> 0 measures the additional profit that can be gained on top of the current realized profit.
Π(Wk, Pk) is straightforwardly solved by simple enumeration over S.

Varian (1990) advocates the use of measures of deviations from optimizing behavior
in an economic sense, because “. . . exactly optimizing behavior isn’t a very plausible
hypothesis to begin with” (Varian, 1990, p.129). If Π(Wk, Pk) is small then a firm
is more-or-less optimizing. This contrasts with the usual hypothesis testing where the
optimization hypothesis is rejected if the estimated parameters deviate in a statistical
sense from the values implied by optimization. One should be careful not to confound
significance in a statistical sense with significance in an economic sense: one does not
necessarily imply the other. We refer the interested reader to McCloskey and Ziliak
(1996) for more discussion on this issue.

1.3.2 Cost minimization

One can derive testable implications in a similar way for cost minimization. In contrast
to the profit maximization case, we do not need the assumption of perfect competition,
atomism or the price taking assumption for output prices. However, we maintain the
assumption that firms are price takers in input prices. Thus, cost minimization is a
far less restrictive assumption. Furthermore, we do not need output prices to test for
cost minimization. A family of input requirements sets “c-rationalizes” the data S =
{(Pk, Xk, Yk)}k=1,...,K if Xk solves

min
X∈I(Yk)

Pk · X′

for all k = 1, . . . , K. Note that this does not require output prices. We have the following
definition:

Definition 1.2 (c-rationality). An input requirements set I(Y) c-rationalizes the ob-
served behavior {(Pk, Xk, Yk)}k=1,...,K if Pk · X′

k ≤ Pk · X′ for all X ∈ I(Yk) for
k = 1, . . . , K.
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Since I(Y) contains all input combinations that can produce at least Y, we require
them to be nested:

if X ∈ I(Y) and Y ≥ Y′, then X ∈ I(Y′).

Equivalently, this means that I(Y) ⊆ I(Y′) for Y ≥ Y′ and essentially it is a free
disposal of outputs assumption. If one does not assume nested input requirement sets
then one can always trivially c-rationalize the data by I(Yk) = {Xk} for k = 1, . . . , K
and I(Y) = ∅ otherwise.

The testable implication, dubbed Weak Axiom of Cost Minimization, is again due
to Varian (1984):6

Theorem 1.2 (Weak Axiom of Cost Minimization (WACM)). The following conditions
are equivalent:

(1) There exists a family of nested input requirement sets {I(Y)} that c-rationalizes the
data.

(2) If Yj ≥ Yi, then Pi · X′
j ≥ Pi · X′

i for all i, j = 1, . . . , K.

(3) There exists a family of nontrivial, closed, convex, free disposal input requirement
set that c-rationalizes the data.

The same discussion as for profit maximization applies here. One should be careful
to note that statement (3) applies to the input requirement set only and not to the
production possibilities set as a whole. In particular, a positive outcome of statement
(2) implies that there exists a closed, convex, free disposal input requirement set (i.e.,
statement (3)). However, this does not imply that convexifying the entire production
possibilities set has no effect on the outcome of the cost minimization test. Thus, con-
vexity is only a harmless assumption for cost minimization when applied to the input
requirement set. We can operationalize WACM by defining:

C(Pk) =
{minX∈Dk

Pk · X′}
Pk · X′

k

≤ 1,

with Dk = {(X, Y) ∈ S|Y ≥ Yk}. Under perfect cost minimization, this relative cost
efficiency measure C(Pk) = 1. Otherwise, 1 − C(Pk) represents the fraction of observed
costs Pk · X′

k that can be saved.

1.4 Duality: two sides of the same coin

In the introduction we briefly mentioned the link between technical and economic effi-
ciency. This section elaborates on how the previous two sections are linked by means of
duality. Recall from the beginning of this chapter that the ratio of prices equals minus

6Free disposal here is with respect to the inputs only. Varian (1984) talks of input requirement sets
that are “positive monotonic”.
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the marginal rate of transformation for a profit-maximizing choice (cfr. (1.3)). Thus,
when observing profit-maximizing observations we can reconstruct the boundary of a
technology set, consistent with profit-maximization, using the ratio of prices at every
one of these observations as illustrated in Figure 1.1 in input space. Conversely, know-
ledge of the technology set – and hence the marginal rate of transformation – allows us to
reconstruct a profit function consistent with the technology set. This section formalizes
this intuition.

Chambers et al. (1998, Lemma 2.1) show that the directional distance function (1.13)
completely characterizes the technology for g > 0: i.e., D(X, Y; g) ≥ 0 ⇐⇒ (X, Y) ∈
Y . Thus, we can rewrite the earlier profit maximization problem (1.1) in terms of the
directional distance function:

max
X,Y

W · Y′ − P · X′ (1.17a)

s.t. D(X, Y; g) ≥ 0. (1.17b)

If (X, Y) ∈ Y, then its technically efficient projection (X̃, Ỹ) = (X−D(X, Y; g)gx, Y+
D(X, Y; g)gy) ∈ Y , because

(X̃, Ỹ) ∈ Y ⇐⇒ D(X̃, Ỹ, g) ≥ 0

⇐⇒ D(X − D(X, Y; g)gx, Y + D(X, Y; g)gy, g)

= D(X, Y, g) − D(X, Y, g) = 0 ≥ 0.

Now, in general, for (X̃, Ỹ) ∈ Y we have that

Π(W, P) =

{

max
X,Y

W · Y′ − P · X′
}

−
[

W · Ỹ
′ − P · X̃′

]

≥ 0

⇐⇒
{

max
X,Y

W · Y′ − P · X′
}

− [
W · Y′ − P · X′] ≥ D(X, Y; g)

(

Wg′
y + Pg′

x

)

⇐⇒ Π(W, P)

Wg′
y + Pg′

x

≥ D(X, Y; g).

If Y is convex, then by the supporting hyperplane theorem we can exactly partition
the space R

n+m in Y and R
n+m \ Y using a hyperplane with parameters (W, P) ≥ 0

such that:

D(X, Y; g) = inf
(W,P)≥0

{

Π(W, P)

Wg′
y + Pg′

x

}

. (1.18)
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This shows that the technology set can be approximated by means of a rescaled
version of the profit function. The following LP program operationalizes this result:

min
tk ,Wk ,Pk≥0

tk − [
Wk · Y′

k − Pk · X′
k

]
(1.19a)

s.t. tk ≥ Wk · Y′
s − Pk · X′

s ∀s ∈ S (1.19b)

Wkg′
y + Pkg′

x = 1. (1.19c)

An important remark is that if the true underlying technology Y is non-convex then
its convex hull is recovered by the profit function (Kuosmanen, 2003). Thus, using
the profit function yields only a very crude – convexified – approximation of a non-
convex technology. Conversely, the profit function can be approximated by means of the
directional distance function:

π(W, P) = sup
(X,Y)≥0

{[

W · Y′ − P · X′]+ D(X, Y; g)
(

Wg′
y + Pg′

x

)}

. (1.20)

Graphically, this boils down to finding the point (X̃, Ỹ) lying on a line parallel to
(−gx, gy). This point lies on the boundary of the technology set (i.e., D(X̃, Ỹ, g) = 0)
and can also be seen as the projected point of a technically inefficient observation (X, Y)
projected onto the boundary of the technology set in the direction (gx, gy).

1.5 Intermezzo: the “Tinbergen rule” in production
theory

One well-known early result in macroeconomics is the “Tinbergen rule”. The Tinbergen
rule is named after Dutch economist and Nobel laureate Jan Tinbergen. Loosely stated,
this rule says that you need at least as many instruments as there are objectives. In
the present production context – in our interpretation –, the inputs can be regarded as
instruments while the outputs can be regarded as objectives. Mechanically this then
means that the more inputs the firm has at its disposal, the more possibilities it has to
produce outputs efficiently (in a technical efficiency or economic efficiency sense): e.g., it
can choose from an entire spectrum of input-output combinations to produce efficiently.
Economically, this manifests itself in the firm choosing from a variety of strategies to be,
e.g., a profit maximizer.

When using dominance-based tests in empirical applications, one often finds many
efficient observations when the number of observations is small relative to the number
of input and output dimensions. The link to the “curse of dimensionality” is relatively
straightforward: when increasing the dimensions of the production space (i.e., the inputs
and/or outputs) while keeping the number of observations constant, the volume of this
production space increases exponentially. Thus, the probability for a given observation
to be close to another observation decreases sharply. Hence, the probability for a given
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observation of having a dominating peer is even smaller. As these nonparametric tests
discussed in this chapter are based on a comparison of the evaluated firm with its (input
and/or output) dominating peers, we necessarily find a large number of efficient firms
as they have no dominating peers to compare with. Convex DEA models (i.e., with
reconstructed production set YC,Γ) are the exception as they combine peer units, which
are not necessarily dominating, into a hypothetical dominating peer.

1.6 Productivity

We are not only interested in the performance of firms, but also how this performance
changes over time. Using only discrete data (Xk,t, Yk,t)

T
t=1 for firms k = 1, . . . , K we

would like to quantify the change in performance over time or productivity.

1.6.1 Malmquist and Hicks-Moorsteen productivity indexes

Intuitively, productivity change between period t and t + 1 in the one input-one output
case can be expressed in ratio form as:

Y0,t+1/X0,t+1

Y0,t/X0,t
. (1.21)

An advantage of this ratio-based formulation is that it is invariant to a change in the
unit of measurement: e.g., converting the monetary outputs and inputs from US dollars
to Euros does not affect the results. A disadvantage is that (1.21) can be undefined
(e.g., when X0,t+1 = 0 or Y0,t = 0) or zero (e.g., when Y0,t+1 = 0). Furthermore, this
formulation satisfies some common sense properties. For example: if (X0,t+1, Y0,t+1) =
(2X0,t, 2Y0,t) then intuitively there is no change in productivity which is indicated by a
value of 1. However, if (X0,t+1, Y0,t+1) = (X0,t, 2Y0,t) then clearly the firm has become
more productive because it is able to produce twice the amount of output holding input
constant. Indeed, the above formula yields 2 indicating improvement of productivity by
a factor 2. Conversely, if (X0,t+1, Y0,t+1) = (2X0,t, 1.5Y0,t) then productivity equals 3/4
and has declined because by doubling the level of input the firm has less than doubled
its output.

In a multi input – multi output setting one would like to retain the intuitive interpre-
tation of (1.21). Hence, we need some form of aggregation of outputs and inputs. The
productivity literature derives index numbers that quantify productivity and propose
decompositions that tell us something about the underlying factors that drive changes
in productivity.

Distance function approach

The seminal work of Caves et al. (1982) introduces the Malmquist productivity index,
named after Sten Malmquist (1953). The output based Malmquist productivity index
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is defined as:

MCCD =
√

Mt · Mt+1, (1.22a)

with the period s = {t, t + 1} output based Malmquist productivity index

Ms =
δs(X0,t+1, Y0,t+1)

δs(X0,t, Y0,t)
(1.22b)

where δs(·) is the Shephard output distance function (1.12) defined over the technology
of period s. The Shephard distance function characterizes the technology and serves as
an aggregator function for the inputs and outputs. The Malmquist output productivity
index measures changes in output distance to the efficient frontier from period t to
period t + 1. MCCD > 1 indicates productivity improvement while MCCD < 1 reflects
deterioration in productivity. No change in productivity occurs for MCCD = 1. It is
common to take a geometric mean of Mt and Mt+1 to avoid an arbitrary choice of base
period. Analogously, the Malmquist input quantity index is defined.

The link between the intuitive notion of productivity (1.21) and the Malmquist in-
dex (1.22) is not immediately clear. The former has an average product interpretation
while the Malmquist index only has this interpretation when the distance functions are
computed with respect to a CRS technology. Grifell-Tatjé and Lovell (1995) show that
the Malmquist index is biased under non-constant returns-to-scale: i.e., it systematically
under- or overestimates productivity change. The source of this bias is exactly the effect
of returns-to-scale.

Different sources affect productivity change. The most important ones are efficiency
change, technical change and scale efficiency change. This can answer important questi-
ons for individual firms such as: Is the improvement in productivity because we became
more efficient and/or because everyone became more efficient? The former is known as
efficiency change while the latter is known as technical change. Much of the literature
focused on (correctly) decomposing MCCD into these various sources when not imposing
CRS on the underlying technology. We refer to Grosskopf (2003) for a historic overview
and additional references.

The Malmquist index is not a measure of total factor productivity (TFP), because
“. . . [it] measures the displacement of the production frontier at a specific point and neg-
lects scale economies. For this reason the CCD Malmquist can be interpreted as a techno-
logy index, i.e., a measure of local technical progress (or regress)” (Peyrache, 2014, p.435).
It neglects scale economies, because it only measures changes in either output or input
distances to the efficient frontier. Thus it only tells half of the story, because it ignores
any changes in input or output distances to the efficient frontier.

Bjurek (1996) defines the Hicks-Moorsteen TFP index as an output quantity index
divided by an input quantity index:

HM =
√

HMt · HMt+1, (1.23a)

with the period s = {t, t + 1} Hicks-Moorsteen index

HMs =
MOs(X0,s, Y0,t, Y0,t+1)

MIs(X0,t, X0,t+1, Y0,s)
=

δs(X0,s, Y0,t+1)/δs(X0,s, Y0,t)

θs(X0,t+1, Y0,s)/θs(X0,t, Y0,s)
. (1.23b)
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Furthermore, contrary to the Malmquist index, the Hicks-Moorsteen index satisfies the
determinateness property meaning that it is always well-defined for all observations and
time periods (Briec and Kerstens, 2011). A decomposition of the Hicks-Moorsteen is pro-
vided by Nemoto and Goto (2005) in a stochastic frontier analysis framework, O’Donnell
(2012a) and Diewert and Fox (2014, 2017) for free disposal technologies. Finally, Färe
et al. (1996) show that the Malmquist index equals the Hicks-Moorsteen index if and
only if the technology is inversely homothetic and exhibits CRS.

Economic approach

When prices are available then one can use these as weights to aggregate the respective
outputs and inputs. One such index is the Törnqvist (1936) productivity index:7

ln T ≡ ln T O − ln T I (1.24)

=
m∑

v=1

(
rv

t + rv
t+1

2

)

ln

(

Y v
0,t+1

Y v
0,t

)

−
n∑

u=1

(
cu

t + cu
t+1

2

)

ln

(

Xu
0,t+1

Xu
0,t

)

,

with period s = {t, t + 1} revenue shares rv
s =

W v
0,sY v

0,s

W0,s·Y′
0,s

and cost shares cu
s =

P u
0,sXu

0,s

P0,s·X′
0,s

.

The Törnqvist productivity index is defined as the ratio of a Törnqvist output index to
a Törnqvist input index. The attractive feature of the Törnqvist index is that it is easy
to compute from price and quantity data. Thus, it does not require the computation of
distance functions as in the Malmquist index (1.22) or the Hicks-Moorsteen index (1.23)
by means of linear programming or econometric techniques.

Exact and superlative index numbers

In Section 1.1 we found that under economic optimization the ratio of prices equals
minus the marginal rate of transformation. Essentially this means that the boundary of
the technology set can be approximated by the ratio of prices under profit maximization.
Conversely, the boundary of the technology set can recover the ratio of prices that
would prevail under profit maximization (i.e., “shadow prices”). Section 1.4 formally
showed how the profit function can approximate the directional distance function which
completely characterizes the production technology and how the directional distance
function can approximate the profit function.

With these duality results in mind it makes sense to wonder whether a similar link
exists between the distance function approach and the economic approach to productivity.
In other words: can the Malmquist index (1.22) and/or the Hicks-Moorsteen index (1.23)
be approximated by the Törnqvist productivity index (1.24) (and vice versa)? It turns
out that – under specific conditions – the answer is positive.

In order to relate the Malmquist index and the Törnqvist index two conditions must
be satisfied. The first one is a behavioral condition: one must assume that firms are

7The Törnqvist price index is historically attributed to Törnqvist (1936), but according to Balk
(2008) it was originally introduced in Törnqvist and Törnqvist (1937).
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profit maximizers. With Section 1.1 and duality of Section 1.4 in mind the necessity of
this condition is easy to understand: (1.22) implicitly and (1.24) explicitly aggregate all
inputs and outputs using a weighted sum. The associated distance function δs(·) uses the
shadow prices of the efficient projections, while the Törnqvist uses the observed prices.
The only way for both weighted sums to be equal is by having the same weights or if
the ratios of shadow prices equal the ratios of market prices.

The second condition is a technological one: the technology must have a particular
“flexible” functional form so that is sufficiently smooth and differentiable. Diewert (1976,
p.115) calls a functional form “flexible” if “it can provide a second order approximation
to an arbitrary twice differentiable linearly homogeneous function”. An index number
is “said to be ‘superlative’ if it is exact (i.e., consistent with) for a ‘flexible’ aggregator
functional form” (Diewert, 1976, p.115). Combining both conditions, Caves et al. (1982,
Theorem 3) formally show that the Malmquist index (1.22) is equal to the Törnqvist
productivity index (1.24) if (i) the Shephard output distance functions can be represented
by a CRS translog functional form with identical second-order coefficients and (ii) the
firm is a profit maximizer. Note that the assumption of profit maximization implies that
the firm is also technically efficient: i.e., δs(X0,s, Y0,s) = 1 for s = {t, t + 1} in (1.22).8

Finally, Mizobuchi (2016, Corollary 2) shows that the Hicks-Moorsteen index (1.23) also
equals the Törnqvist index under the above mentioned conditions.

1.6.2 Indexes vs. indicators

The previous subsection started out with (1.21) as an intuitive ratio-based measure of
productivity. However, we can equivalently express a productivity measure in terms of
differences:

[Y0,t+1 − X0,t+1] − [Y0,t − X0,t]. (1.25)

This difference-based measure is not units invariant like the ratio-based measure (1.21),
but in contrast to (1.21) it is well defined even when some of the variables equal zero
and it is translation invariant: adding a constant τ ∈ R to all outputs and inputs has
no effect (cfr. (1.21)). Furthermore, it has some intuitive properties. For example: if
(X0,t+1, Y0,t+1) = (X0,t + 2, Y0,t + 2) then intuitively there is no change in productivity
which is indicated by a value of 0. However, if (X0,t+1, Y0,t+1) = (X0,t, Y0,t + 2) then
clearly the firm has become more productive because it is able to produce two more
units of output holding input constant. Indeed, the above formula yields 2 indicating
improvement of productivity by 2 units. Conversely, if (X0,t+1, Y0,t+1) = (X0,t + 2, Y0,t +
1.5) then productivity equals −0.5 and has declined because by using two more units of
input the firm has added less than two units of its output.

We refrain from presenting productivity indicators in a multi input – multi output
setting, because this is the subject of Chapter 2 and Chapter 3 which in turn discuss the
Luenberger productivity indicator and the Luenberger-Hicks-Moorsteen TFP indicator.

8Balk (1998) generalizes this result by not requiring technical efficiency while Diewert and Fox (2010)
further relax the assumption of perfect competition and allow for increasing returns-to-scale.
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Analogously to the case of productivity indexes, exact and superlative indicators exist
for these productivity indicators. We refer the interested reader to Chambers (2002).

It should be clear that both indexes and indicators have their specific merits in
specific situations and that it often depends on data characteristics and/or the user’s
preference.

1.7 Concluding remarks

We presented a brief overview of necessary tools for technical and economic efficiency
measurement. We discussed the underlying theory and nonparametric tools to evaluate
efficiency and demonstrated how to operationalize them on discrete data. We showed
how duality theory acts as the mold between technical and economic efficiency. Finally,
we discussed how productivity measures the performance of firms over time and how
different approaches to productivity measurement are linked once again by duality. We
end this chapter by discussing some of the limitations of the presented tools.

A first issue pertains to the “no noise, no outlier” assumption (Axiom 1.6). This is a
strong assumption which is seldom valid in practice. A number of tools exist that relax
this assumption such as partial frontiers (order-m and order-α) discussed in Daraio
and Simar (2007) and superefficiency models of Banker and Chang (2006) for outlier
detection. The presented methods in this thesis can quite easily be modified along those
lines. Finally, we did not touch upon the statistical properties of DEA estimators. It
can be shown that DEA estimators are consistent under some mild conditions: i.e., the
estimation error (bias) goes to zero as the sample size increases (Banker, 1993). We refer
the interested reader to the book of Daraio and Simar (2007) for more details.

A second point of discussion is with regard to how measured inefficiency should
be interpreted. The presented measure of profit efficiency relies on the assumptions
of perfect competition, atomism and price taking behavior in input and output prices
while the measure of cost efficiency maintains only the price taking assumption in input
prices. The presented economic efficiency tests then constitute a joint test of all these
assumptions. Therefore, the measured economic inefficiency could also be regarded as a
violation of any of these assumptions. We here mention some examples of papers that
address these issues. Cherchye et al. (2002) relax the assumption of exogenous prices by
allowing for prices that depend on quantities through a known inverse demand function.
Portela and Thanassoulis (2014) propose a modification using only observed prices and
quantities and propose a decomposition of cost efficiency. Lee and Johnson (2015) go
a step further and identify the Nash market equilibrium for given inverse demand and
supply functions. Finally, Carvajal et al. (2013) develop revealed preference tests of the
Cournot model while Carvajal et al. (2014) develop nonparametric tests for models of
multi-product oligopoly.

Furthermore, the presented technical efficiency measures rely on the assumption
that the empirical approximation to the technology is appropriate for the true techno-
logy. This empirical approximation in turn depends on the validity of the modeling
assumptions. It is then entirely possible that the measured inefficiency can (partially)
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be explained by some market or technology constraint which is unobserved by the em-
pirical analyst and hence not accounted for in the modeling. For instance, capacity
constraints determine maximum output per firm and can therefore (partially) explain
measured output technical inefficiency or profit inefficiency.

The following chapters constitute the main body of this thesis. Chapter 2 and chap-
ter 3 contribute to the productivity literature. Chapter 2 proposes a productivity me-
asure that measures potential gains of input reallocation which can be decomposed in
underlying factors. It uses a nonparametric empirical approximation of the technology
which models and links the individual farm activities. Chapter 3 presents a decompo-
sition of the Luenberger-Hicks-Moorsteen total factor productivity indicator along with
an empirical application on US state-level agricultural data. Chapter 4 contributes to
the literature on economic efficiency by proposing a framework for intertemporal cost
minimization and corresponding nonparametric tests. The empirical illustration com-
pares and highlights differences between the static cost minimization model and our
intertemporal cost minimization model. Chapter 5 determines the direction vectors in
(1.13) through a comparative analysis of key DMUs and presents a visualization tool to
compare DMUs in terms of their input-output mix similarity and scale.





Chapter 2

To mix or specialise? A coordination

productivity indicator for English

and Welsh farms
“Most traditional DEA models treat their reference technologies as black
boxes. Our network models, developed for the Swedish Institute for Health
Economics (IHE), allow us to look into these boxes and to evaluate organiza-
tional performance and its component performance.”

— Rolf Färe and Shawna Grosskopf1

2.1 Introduction

The economic choice for a farmer about whether to engage in specialised or mixed agri-
culture is based on a comparison of the gains from economies of scale versus the gains
from diversifying risk and economies of scope.2 Crop-specific capital (e.g., harvesters
and ploughs) and livestock-specific capital (e.g., milking robots) are expensive and be-
nefit considerably from economies of scale. Furthermore, these fixed costs of capital can
be spread more over higher production volumes. Thus, a return on these investments
can only be achieved by increasing the scale of operation, which in turn leaves little
room for other farming activities (Chavas and Aliber, 1993; Fernandez-Cornejo et al.,

0This chapter is based on joint work with Frederic Ang (Swedish University of Agricultural Sciences)
and a slightly different version was published as Ang and Kerstens (2016) in Journal of Agricultural
Economics. The paper was joint winner of the “Prize Essay Competition” for young researchers of the
Agricultural Economics Society (AES) in 2016.

1Färe and Grosskopf (2000, p.35)
2The literature makes a further distinction between “economies of scope” and “economies of diver-

sification”. Following Panzar and Willig (1981), the former focuses on measuring the cost of complete
specialisation while the latter focuses on measuring the cost of partial specialisation (Chavas and Kim,
2010). The specialisation scheme to use is context dependent and in addition can be due to data li-
mitations. Complete specialisation has more severe data requirements as it requires the observation of
completely specialised farms. Since we do observe completely specialised farms in the data, we stick to
the economies of scope terminology. We refer to Chavas and Kim (2010) and references therein for a
discussion.

25
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1992). European agriculture is nowadays increasingly characterised by specialised pro-
duction. In the light of the liberalisation of the Common Agricultural Policy, input
and output prices are becoming more volatile, increasing the volatility of the farmer’s
income. Economic intuition suggests that diversifying into more farming activities and
mixed farming generates economies of scope resulting from complementarities between
different farming activities, which allows for production at lower cost (Chavas, 2008).3

Moreover, researchers and policy makers are increasingly concerned about the negative
environmental impact of nutrient surplus associated with specialisation (Ryschawy et al.,
2012).

The efficiency and productivity of a farm play an essential role for its long-term vi-
ability, requiring coordination of crop- and livestock-specific inputs. The overwhelming
majority of the studies in the efficiency and productivity literature treat agricultural pro-
duction as a black-box where the subprocesses are overlooked.4 This implicitly leaves the
question unanswered whether more or less specialisation would be needed for efficiency
gains. In addition, this hampers the comparability of farms with different subprocesses.
The difficulty of modelling these subprocesses may explain why most empirical studies
only focus on specialised farms. We introduce a coordination Luenberger productivity
indicator that addresses these problems.

Färe and Whittaker (1995) introduce an efficiency framework that takes into account
the production of intermediate inputs on the farm. In their model, crop output can also
be used as a feed input in the livestock enterprise. Focussing on a sample of cereal
farms, Färe et al. (1997) develop an efficiency framework where land use can be real-
located. Cherchye et al. (2013) develop a general framework that opens the black-box
of production by explicitly modelling input allocation in a multi-output setting. They
distinguish different subdivisions with their own output. Every output uses its own as-
sociated output-specific inputs and common joint inputs that are shared by all outputs.
They develop a radial input-oriented framework. Using this framework, Cherchye et al.
(2017b) address the question of efficient allocation of common output-specific inputs over
subdivisions. They develop a coordination efficiency measure that quantifies the possible
efficiency gains from reallocating some inputs over the subdivisions.5

3The distinction between economies of scale and economies of scope is less clear-cut in case of
non-separability between outputs. Loosely defined, separability between two outputs implies that a
change in production of one output does not affect production of the other output. Chavas and Kim
(2010) introduce a diversification measure and show that this measure can be decomposed into four
effects: complementarity among outputs, scale, convexity and fixed costs. Under a pattern of complete
specialization, Chavas and Kim (2010, Proposition 2) show that this diversification measure only depends
on the complementarity among outputs effect and fixed costs effect. Separability implies that this
complementarity effect equals zero so that economies of diversification only depend on fixed costs under
a pattern of complete specialization.

4Färe and Whittaker (1995), Färe et al. (1997), Jaenicke (2000), Skevas et al. (2012) and Chen (2012)
are exceptions.

5There exists a stream of literature that handles interfirm reallocation of inputs. This social planner
perspective to reallocation starts from a fixed industrywide amount of inputs (e.g., quota) that needs to
be reallocated among firms. The consequences for individual firms include break-ups, mergers, interfirm
reallocation of resources or shutting down their operations entirely. We refer to Peyrache (2013) for a
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Using a nonparametric framework, this paper extends the static, radial framework
suggested by Cherchye et al. (2017b) to a dynamic context of coordination Luenberger
productivity growth. Cherchye et al. (2017b)’s radial framework only identifies ineffi-
ciencies in the input direction. We generalise this approach by developing a directional
distance function framework where inputs as well as outputs are choice variables, which
is consistent with profit-maximising behaviour. The Luenberger productivity indicator
builds on contemporaneous and intertemporal directional distance functions. It measu-
res productivity growth by simultaneously assessing changes in the input and output
level over time and can be decomposed into components of technical inefficiency change
and technical change. Explicitly taking into account the subprocesses of crop production
and livestock production, our framework is able to adequately compare the efficiency and
productivity of crop farms, mixed farms and livestock farms. It also indicates whether
coordination efficiency gains would be associated with specialisation or diversification
towards mixed farming. Moreover, we define a coordination productivity indicator that
measures productivity growth due to optimal reallocation of process-specific inputs over
time which is decomposable in a coordination technical inefficiency change component
and a coordination technical change component. This decomposition allows us to assess
how reallocation affects the different sources of productivity growth. The empirical ap-
plication focusses on panel data from mixed and specialised farms in England and Wales
over the period 2007 − 2013.

The remainder of the paper is structured as follows. The next section describes the
theoretical framework for measuring the coordination Luenberger productivity indicator
and its components. This is followed by the practical implementation and empirical
application. The final section concludes.

2.2 Mixed farm model

In this section we describe our mixed farm model. We distinguish two interdependent
subprocesses with their own technology. We then propose a coordination Luenberger
productivity indicator and its decomposition that identifies how coordination inefficiency
affects the different sources of productivity growth.

2.2.1 Model and technology description

We identify 2 processes: the crop subprocess (C) and the livestock subprocess (L). The
network structure is shown in Figure 2.1. Following Färe and Whittaker (1995), both
processes are interdependent because the livestock process uses unmarketed residue of
crops as feed for its livestock in addition to feed bought on the market. Note that

comprehensive framework which introduces an efficiency indicator of industry configuration. Examples
of application include reallocation of fishing quota (Andersen and Bogetoft, 2007), sugar beet contracts
(Bogetoft et al., 2007) and nitrogen emissions permits (Nielsen et al., 2014). We take the farmer’s
perspective in the present study to determine how an individual farmer can become more efficient by
reallocating inputs among farming activities.
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manure could be modelled as a livestock output, which can serve as an input for future
crop production. However, we do not include manure in our model due to a lack of
availability of manure data.6

Cropst−1

Livestockt−1

Cropst

Livestockt

XC
tQt

XL
t

YC
t

ZC
t

YL
t

Figure 2.1: Network structure of the model.

The crop subprocess has the following inputs and outputs:

• XC
t ∈ R

NC
+ : inputs such as labour, seeds, etc;

• YC
t ∈ R

OC
+ : outputs such as wheat, barley, etc;

• ZC
t ∈ R

OC
+ : outputs that are not sold, but used as feed in the same period for the

livestock.

The livestock subprocess has the following inputs and outputs:

• XL
t ∈ R

NL
+ : inputs such as labour, feed, etc;

• ZC
t ∈ R

OC
+ : outputs from the crops used as feed in the same period;

• YL
t ∈ R

OL
+ : outputs such as milk, meat, etc;

Note that XL
t and ZC

t can have common inputs: the farmer buys additional feed for
his livestock on top of the feed he already collected from his crops. Define the index set
H = {1, . . . , NL} ∩ {1, . . . , OC} for these common inputs.

There can be some inputs that are shared by both processes but which are not joint.
Land use is such an input: the farmer has to decide how much of his land area to use
for crop production and livestock production. Thus, these subprocess-specific inputs

6At the time of writing, manure data were only available for the years 2012 and 2013 for a subsample
of farms.
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have to be allocated among both processes. In line with Cherchye et al. (2017b), this
allocation might not be optimal and a better reallocation is possible. Let Xt ∈ R

C
+ with

C ⊆ {1, . . . , NC} ∩ {1, . . . , NL} be the process-specific inputs that have to be allocated
among both subprocesses such that

XC,m
t + XL,m

t = Xm
t ∀m ∈ C. (2.1a)

Thus, C is the subset of inputs, common to crop and livestock, that can be reallocated
among both subprocesses.7 In line with Färe et al. (1997), this application regards crop
land and livestock land as reallocatable, fixed inputs.

Furthermore, the levels of the other process-specific inputs must also be adjusted for
the new reallocation:

∑

∀i∈{1,...,NC}\C

pC,i
t XC,i

t +
∑

∀j∈{1,...,NL}\C

pL,j
t XL,j

t = PEXPt, (2.1b)

where pC
t ∈ R

NC
++ and pL

t ∈ R
NL
++ are the prices of crop-specific and livestock-specific

inputs and PEXPt is the total process-specific expenditures.8 This budget constraint
allows the farmer to redistribute the process-specific budget over the crop and livestock
activities while staying within his budget. In general, we do not know the individual
farmer’s credit or budget constraints, but we do observe his total process-specific expen-
ditures. Therefore, process-specific expenditures can be reallocated within the farmer’s
observed budget.

Finally, the crop and livestock process share a joint input Qt ∈ R
M
+ (e.g., buildings

and machinery). Joint inputs are inputs which are shared by the different subprocesses
(see Cherchye et al. (2013)). Some of these joint inputs are fixed: let F ⊆ {1, . . . , M}
denote the set of fixed joint inputs.

We now define the technology of each subprocess by their production set. The crop
subprocess production set is:

YC
t =

{

(XC
t , Qt) produces (YC

t , ZC
t )
}

. (2.2)

Similarly, the livestock subprocess production set is:

YL
t =

{

(XL
t , ZC

t , Qt) produces YL
t

}

. (2.3)

In the remainder of this paper, we assume the following basic axioms for both subpro-
cesses:

Axiom 2.1 (strong disposability of inputs). (x, y) ∈ Y and x′ ≥ x =⇒ (x′, y) ∈ Y

7This assumes that these common inputs can be freely reallocated between both subprocesses without
losing value in a marginal product sense. This means, for example, that one unit of livestock land can
be reallocated to crop land and yields equal amounts of crop output as any other unit of crop land.

8In the absence of price data, one could equivalently work with expenditures. The quantities are
then expenditures and the modified budget constraint would be (2.1b) without prices.
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Axiom 2.2 (strong disposability of outputs). (x, y) ∈ Y and y′ ≤ y =⇒ (x, y′) ∈ Y

Axiom 2.3 (convexity). Technology set Y is convex.

The overall network production set is:

Yt =
{

(XC
t , Qt, YC

t , ZC
t ) ∈ YC

t and (XL
t , ZC

t , Qt, YL
t ) ∈ YL

t

}

, (2.4)

and satisfies the above axioms by construction.

2.2.2 The Luenberger productivity indicator and its decomposition

We use Luenberger’s directional distance function to measure technical inefficiency by
simultaneously contracting inputs and expanding outputs. This is consistent with profit
maximisation. Shephard (1970)’s input and output distance functions are special cases
of the directional distance function (Chambers et al., 1996a) and are consistent with cost
minimisation and revenue maximisation, respectively. Define, for notational convenience,
Xt = (XC

t , XL
t , ZC

t , Qt) as the input vector and Yt = (YC
t , YL

t , ZC
t ) as the output vector.

The directional distance function proposed by Chambers et al. (1996b) is:

Dt(Xt, Yt; gt) = sup
{

β ∈ R : (Xt − βgx,t, Yt + βgy,t) ∈ Y t

}

, (2.5)

if (Xt − βgx,t, Yt + βgy,t) ∈ Y t for some β and Dt(Xt, Yt; gt) = −∞ otherwise. Here,
gt = (gx,t, gy,t) represents the direction vector. The directional distance function is a
special case of Luenberger (1992)’s shortage function.

We denote the time-related directional distance function for (a, b) ∈ {t, t + 1} ×
{t, t + 1}:

Db(Xa, Ya; ga) = sup
{

β ∈ R : (Xa − βgx,a, Ya + βgy,a) ∈ Yb

}

.

Furthermore, we distinguish between Dt(Xt, Yt; gt|R) and Dt(Xt, Yt; gt|NR): the for-
mer allows for reallocation of the process-specific inputs over the subprocesses (i.e., (2.1)),
while the latter keeps these fixed.

In an analogous way, we define “reallocative” and “non-reallocative” Luenberger
productivity indicators Lt,t+1(·|R) and Lt,t+1(·|NR) respectively. The Luenberger pro-
ductivity indicator proposed by Chambers (2002) is defined as:

Lt,t+1(Xt, Yt, Xt+1, Yt+1; gt, gt+1|c)

=
1

2

[
(Dt(Xt, Yt; gt|c) − Dt(Xt+1, Yt+1; gt+1|c))

+ (Dt+1(Xt, Yt; gt|c) − Dt+1(Xt+1, Yt+1; gt+1|c))
]

, (2.6)
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for c ∈ {R, NR}. It can be additively decomposed into a technical inefficiency change
component and a technical change component:

Lt,t+1(·|c) =
(
Dt(Xt, Yt; gt|c) − Dt+1(Xt+1, Yt+1; gt+1|c)

)

+
1

2

[

(Dt+1(Xt+1, Yt+1; gt+1|c) − Dt(Xt+1, Yt+1; gt+1|c))

+ (Dt+1(Xt, Yt; gt|c) − Dt(Xt, Yt; gt|c))]

≡ ∆T EI(c) + ∆T (c), (2.7)

where the first difference is the technical inefficiency change component ∆T EI(c) and the
arithmetic average of the two last differences captures technical change ∆T (c) (Chambers
et al., 1996b). The technical inefficiency change component quantifies the change in
relative position of a given observation to the (shifted) production frontier. The technical
change component measures the change in the production frontier itself and is therefore
a measure of technical progress or regress. The relevant distance functions are depicted
in Figure 2.2.

b

b
(Xt, Yt)

(Xt+1, Yt+1)

t

t + 1

Dt+1(Xt, Yt; gt|c)

Dt(Xt, Yt; gt|c)

Dt+1(Xt+1, Yt+1; gt+1|c)

Dt(Xt+1, Yt+1; gt+1|c)

x

y

Figure 2.2: Distance functions of the Luenberger productivity indicator.

2.2.3 Coordination inefficiency

Cherchye et al. (2017b) consider a model of a Decision Making Unit with several subdi-
visions (they give an example of a university with subdivisions in research and teaching).
They are interested in measuring whether efficiency gains are possible from reallocating
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common inputs over the different subdivisions. To this end, they distinguish radial me-
asures of decentralised and centralised efficiency. Decentralised efficiency is the radial
measure of efficiency when the current allocation is preserved over the subdivisions. In
contrast, centralised efficiency is the radial measure of efficiency when the allocation is
free to change over the subdivisions. Then, they define coordination efficiency as the
ratio of centralised over decentralised efficiency. We make use of a directional distance
function framework, which is more flexible in that it allows for varying input and output
levels.

An equivalent difference-based coordination inefficiency measure is:

CI = Dt(Xt, Yt; gt|R) − Dt(Xt, Yt; gt|NR). (2.8)

where R, NR denote reallocation and no reallocation from present farm organisation,
respectively. Here, one can see that Dt(Xt, Yt; gt|R) ≥ Dt(Xt, Yt; gt|NR), because the
status quo allocation represented by Dt(·|NR) is always attainable when reallocation is
allowed. Positive values for CI indicate that inefficiencies may arise from suboptimal
allocation of inputs.

2.2.4 Coordination productivity indicator

We measure how much productivity growth is affected by reallocation of inputs over
time by comparing the reallocative Luenberger productivity indicator with the non-
reallocative Luenberger productivity indicator. Lt,t+1(R) > (<)Lt,t+1(NR) indicates
that a farmer becomes better (worse) at reallocating over time which leads to improved
(worsened) productivity growth. We define a “coordination Luenberger productivity
indicator” CLt,t+1 as the difference between Lt,t+1(R) and Lt,t+1(NR):

CLt,t+1 ≡ Lt,t+1(R) − Lt,t+1(NR)

= [∆T EI(R) − ∆T EI(NR)] + [∆T (R) − ∆T (NR)]

≡ ∆CI + ∆CT, (2.9)

where ∆CI is coordination inefficiency change and ∆CT is coordination technical change.
∆CI measures the change in coordination inefficiency that can be ascribed to reallocation
of process-specific inputs over time. ∆CT measures changes in the production frontier
due to reallocation of process-specific inputs over time.

2.3 Practical implementation

The empirical analyst can compute efficiency and productivity measures using either a
parametric or nonparametric approach. The parametric approach takes into account
stochastic factors and does not treat all deviations from the frontier as inefficiency. Ho-
wever, it requires a specification of a functional form and technical changes cannot be
determined at the firm level. We opt for the nonparametric approach which does not re-
quire such a specification and allows for determination of firm-specific technical changes
(Oude Lansink et al., 2015).



2.3. PRACTICAL IMPLEMENTATION 33

We assume that we have data

S =
{

pC
k,t, XC

k,t, pL
k,t, XL

k,t, ZC
k,t, Qk,t, YC

k,t, YL
k,t

}T

t=1

for Decision-Making Unit (DMU) k = 1, . . . , K. The DMU under evaluation is k = 0.

2.3.1 Technology

The crop production set for a variable-returns-to-scale technology can be empirically
approximated as:

Ŷ
C

t =
{

(XC
0,t, Q0,t, YC

0,t, ZC
0,t) :

K∑

k=1

λk,tX
C
k,t ≤ XC

0,t, (2.10a)

K∑

k=1

λk,tQk,t ≤ Q0,t, (2.10b)

K∑

k=1

λk,t(Y
C
k,t + ZC

k,t) ≥ (YC
0,t + ZC

0,t), (2.10c)

K∑

k=1

λk,t = 1, (2.10d)

λk,t ≥ 0 } . (2.10e)

The livestock production set for a variable-returns-to-scale technology can be empirically
approximated as:

Ŷ
L

t =
{

(XL
0,t, ZC

0,t, Q0,t, YL
0,t) :

K∑

k=1

γk,tX
L,h
k,t ≤ XL,h

0,t ∀h /∈ H, (2.11a)

K∑

k=1

γk,t(Z
C,h
k,t + XL,h

k,t ) ≤ ZC,h
0,t + XL,h

0,t ∀h ∈ H, (2.11b)

K∑

k=1

γk,tQk,t ≤ Q0,t, (2.11c)

K∑

k=1

γk,tY
L
k,t ≥ YL

0,t, (2.11d)

K∑

k=1

γk,t = 1, (2.11e)

γk,t ≥ 0 } . (2.11f)

These approximations are the inner bound approximations of the technology (Varian,
1984). From these subprocesses we obtain the approximation Ŷ t of the overall technology

by taking the intersection of Ŷ
C

t and Ŷ
L

t .
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2.3.2 Inefficiency measurement

The implementation of the directional distance function (2.5) is:

Dt(X0,t, Y0,t; gt) = sup
{

β ∈ R : (X0,t − βgx,t, Y0,t + βgy,t) ∈ Ŷ t

}

. (2.12)

The combination of subprocesses is implemented by solving linear programme (2.13)
which essentially combines (2.10), (2.11) and (2.12). The linear programmes are rele-
gated to the Appendix to conserve space. In line with the literature (e.g., Chambers
et al. (1996b)), we select gx,t = Xt and gy,t = Yt as the directional vectors. This
choice ensures that the contemporaneous directional distance function is feasible (Briec
and Kerstens, 2009) and can be interpreted as the maximum proportional contraction of
variable inputs and simultaneously as the maximum proportional expansion of outputs.

The directional distance function which allows for reallocation of land and the process-
specific variable costs is computed by solving the linear programme (2.14) in the Appen-
dix. Compared to (2.13), the crop-specific (XC

0,t) and livestock-specific (XL
0,t) variable

inputs are additional choice variables in this linear programme. Furthermore, it has two
additional constraints to ensure that (i) the sum of the optimal crop land and livestock
land is equal to the total land area; (ii) the process-specific variable costs can be opti-
mally redistributed over the crop and livestock activities. (ii) is in line with Färe and
Grosskopf (2012)’s cost-constrained efficiency measure. Consider the following example
to see why this redistribution of the process-specific variable costs is necessary: it would
make little sense for a fully specialised livestock farm to diversify into crops without this
reallocation of the budget, for he would not be able to buy the necessary seeds for his
crop land (i.e., XC,m

0,t = 0 in (2.13a)). Therefore, he must be able to reallocate part of

his budget to crop specific inputs (such that XC,m
0,t > 0). An analogous reasoning holds

for a fully specialised crop farm.9

Note that our model makes several implicit assumptions about land use. First, we
assume that land is immediately reallocatable and costless.10 Second, we assume that
all the farm’s utilised land is substitutable between crops and livestock and thus we do
not take into account heterogeneity of land quality. In practice, at least some mixed
farms are mixed precisely because some of the land is not suitable for crop production.
We can drop this assumption by treating reallocated units of land differently in the
production technology depending on their land quality. For instance, one could do this

by discounting reallocated units of land in Ŷ
C

t and Ŷ
L

t . This would reflect that, for
example, 1 unit of livestock land reallocated to crop production is worth 0.8 unit of
crop land. This modification implements the “input specificity” concept described in

9In exceptional cases, this budget constraint may lead to Da(X0,b, Y0,b; gb|R) <
Da(X0,b, Y0,b; gb|NR) for (a, b) ∈ {t, t + 1} × {t, t + 1} and a 6= b if the technically efficient allo-
cations fall outside the budget constraint. One can solve this by using expenditures instead of (implicit)
quantities, as prices are effectively equal to unity when using expenditures. However, using expenditures
conflates technical and economic efficiency.

10This assumption can be weakened by assuming that reallocation leads to temporary reductions in
production. We refer to Oude Lansink and Stefanou (2001), Nemoto and Goto (1999, 2003) and Silva
and Stefanou (2003, 2007) for specific examples to model these adjustment costs.
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Caballero and Hammour (1998). However, this modification requires detailed data on
land quality which is unavailable to us at the time of writing.

2.4 Empirical Application

2.4.1 Data description

Our empirical application focusses on a large sample of specialised and mixed farms in
England and Wales. We obtain data from the Farm Business Survey (FBS) dataset
covering the period 2007 − 2013. The FBS dataset provides farm-level information on
economic and physical characteristics. It is unbalanced but statistically representative.
Farms remain in the panel for a maximum of on average 5 − 7 years. To model the
complex production processes on the farm in a detailed way, this paper exploits the rich
characterisation of outputs and inputs of the FBS dataset. We distinguish 2 outputs,
12 variable inputs and 6 fixed factors. The outputs are crop production and livestock
production. Note that, in general, one is likely to encounter a lot of specialisation in
data with few aggregate outputs than in data with more disaggregate outputs. Joint
non-reallocatable variable inputs are energy use, water use, hired labour and other inputs
(costs on insurance, bank charges, professional fees, vehicle tax and other general farming
costs). Crop-specific inputs are seed and young plants, fertilisers, crop protection and
other variable crop costs. Livestock-specific inputs are bought feed and fodder, veterinary
costs and medicine, and other livestock costs and the non-marketed crop output used
as feed. Family labour and joint capital costs are joint non-reallocatable fixed factors.
Aggregated crop-specific capital costs (permanent crops, debtors of crop subsidies, off-
farm grain storage, crops, cultivations and stores) and livestock-specific capital costs
(livestock and forage) are crop- and livestock-specific fixed factors, respectively. Crop
land and livestock land are assumed to be fixed factors that are reallocatable among
the outputs. This implies that total land use (and thus also farm size) is assumed to
be fixed for a given year, but that the farmer can choose how much land to allocate
to crop production and livestock production. Except for (hired and family) labour
and land, which are measured in annual working hours and hectares, respectively, all
inputs and outputs are measured in constant 2007£. We compute implicit quantities
of outputs and capital costs by calculating the ratio of value to the respective price
index. We aggregate the monetary crop-specific, livestock-specific and joint variable
inputs as implicit quantities by computing the ratio of their aggregated value to their
corresponding aggregated Törnqvist price index. Price indices vary over the years but
not over the farms, implying that differences in the composition or quality of inputs and
outputs are reflected by differences in implicit quantity (Cox and Wohlgenant, 1986).
The separate price indices are obtained from the Eurostat (2015) database.

Data Envelopment Analysis (DEA) is sensitive to different environmental conditions
(e.g., weather conditions), outliers and measurement errors. We address these drawbacks
as follows. First, we control for environmental differences by separately running the DEA
models per region. East Midlands (EM), East of England (EE), South East (SE), North
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East (NE), North West (NW), Yorkshire & the Humber (YH), South West (SW), West
Midlands (WM) and Wales (WA) are the considered regions. Second, we remove influ-
ential outliers using the approach developed by Banker and Chang (2006). We run DEA
model (2.14) for each observation by excluding the observation itself from the reference
technology. Outliers are situated well outside the adjusted reference technology and
appear ’super-efficient’ (Banker and Chang, 2006) with a score substantially below zero.
We only include the observations with a Dt(·|NR) between the 5 and 95 percentile.11

Since we explicitly account for heterogeneous technologies in our specification, we in-
clude specialised as well as mixed farms in our analysis. The eventual dataset contains
12, 738 observations for a period of seven years.

Table 2.1 shows the descriptive statistics of the variables used in the analysis. In
particular, the last column indicates the presence of completely specialised farms in our
sample (i.e., Y C

t + ZC
t = 0, Y L

t = 0 and XC,m
t , XL,m

t = 0).

Variables Dimensions Average Std. Dev. Min

Crop-specific variable inputs XC
t Constant 2007£ 47,731 144,414 0

Livestock-specific variable inputs XL
t Constant 2007£ 15,160 28,083 0

Non-labour joint variable inputs Qf
t , f /∈ F Constant 2007£ 19,894 36,630 1002

Hired labour Ann. Working Hours 4,977 15,592 0

Family labour Qf
t , f ∈ F Ann. Working Hours 2,631 969 5

Joint capital £ 1,086,669 1,505,083 11,564

Crop-specific capital XC,m
t , m /∈ C Constant 2007£ 85,416 250,381 0

Livestock-specific capital XL,m
t , m /∈ C Constant 2007£ 90,660 104,562 0

Crop land XC,m
t , m ∈ C Hectares 131 334 0

Livestock land XL,m
t , m ∈ C Hectares 224 286 0

Total crop output Y C
t + ZC

t Constant 2007£ 94,271 323,051 0

Crop output used as feed ZC
t Constant 2007£ 2,449 7,781 0

Livestock output Y L
t Constant 2007£ 165,403 376,680 -2,893

Table 2.1: Descriptive statistics of variables.

2.4.2 Static analysis: decomposing technical inefficiency

Table 2.2 presents the results of the static analysis of coordination inefficiency, CI,
technical inefficiency when process-specific inputs over crops and livestock are optimally
chosen, Dt(Xt, Yt; gt|R), and technical inefficiency when reallocation of process-specific
inputs is not allowed, Dt(Xt, Yt; gt|NR).12 Dt(Xt, Yt; gt|NR) ranges from 0.044 (in
NE) to 0.131 (in WA). Considering our specification of directional vectors, this means
that farms in NE and WA could simultaneously expand their output levels and con-
tract their input levels by on average 4.4% and 13.1%, respectively if their land use
would remain fixed. These regions also provide the lowest (0.092) and highest (0.194)

11Infeasibilities may appear when the considered observation has a peer with a projected negative
output. Ray (2008) shows that these observations then have a score of lower than −1. We treat these
observations as outliers.

12We only include the arithmetic averages to conserve space, but yearly results are available from the
authors upon request.
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corresponding Dt(Xt, Yt; gt|R) if land use would be optimally reallocated. The wedge
between Dt(Xt, Yt; gt|R) and Dt(Xt, Yt; gt|NR), CI, is on average small and ranges
from 0.036 (in EM) to 0.063 (in WA and WM). Thus, several regions may reduce techni-
cal inefficiency by optimally diverting land use to livestock and crops.

This table also analyses the differences in CI, Dt(Xt, Yt; gt|R) and Dt(Xt, Yt; gt|NR)
among livestock farms (crop production covers 0-33% of total utilised land area), mixed
farms (livestock production/crop production covers 33-66% of total utilised land area)
and crop farms (livestock production covers 0-33% of total utilised land area).

Table 2.2 shows a clear pattern in differences in CI regarding farm types. CI in
livestock farms is higher than CI in crop farms. CI in mixed farms is higher (lower) than
CI in crop (livestock) farms. Specialisation in crop production thus leads to reduction in
coordination inefficiency and better allocation of process-specific inputs. In what follows,
we discuss the results that are significant at the 10% level using the Wilcoxon rank test
(see Table 2.5 in the Appendix). CI is significantly higher in livestock farms than in crop
farms for all regions. Livestock farms have a significantly higher CI than do mixed farms
in NW, SW and WA. In EM, CI is significantly higher in mixed farms than in livestock
farms, but the difference is very small (0.006). In the majority of regions (EE, EM, NW,
SE, SW and WM), CI is higher in mixed farms than in crop farms. In summary, these
differences in CI are not only statistically significant, but also economically significant.

Turning to the non-reallocative directional distance function Dt(·|NR), no such pat-
tern is present: in some regions (NW, SE, SW, WA, WM and YH) Dt(·|NR) of livestock
farms is higher than for crop farms, while in others (EE, EM and NE) the opposite
holds. This result is significant for the majority of the regions. Similar ambiguity holds
for comparing mixed farms to specialised farms.

These inefficiencies are generally lower than those found in the efficiency literature
on agriculture in the United Kingdom.13 However, it is difficult to compare our results
with those in the literature. All previous results use radial measures focussing solely on
input reductions or output expansions. In addition, all (but Hadley et al. (2013)) employ
Stochastic Frontier Analysis where inefficiency is separated from random noise. Finally,
previous studies use a subsample of our sample by only focussing on one type of farms
or using data spanning different periods.

Table 2.3 and Figure 2.3 analyse the land use changes that are associated with
eliminating coordination inefficiency. If CI = 0, farms do not need to change land use
(n.). If CI > 0, (2.14) also allows us to compute the optimal land allocations. Farms
should then either allocate more land to livestock (-) or crops (+). Interestingly, the
required reallocation is considerably skewed towards more crop land use. For almost
every region, there is a higher proportion of farms that would need to allocate more land
to crops than to livestock. This holds for livestock farms, mixed farms as well as crop
farms. This implies gains from specialisation (diversification towards mixed farming) for
crop (livestock) farms. This confirms the above finding that livestock farms have more
scope to reduce inefficiency by reallocating process-specific inputs.

13Similar studies were conducted by Areal et al. (2012); Hadley (2006); Hadley et al. (2013); Karagi-
annis et al. (2002, 2004); Wilson et al. (2001).
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Region Total sample Livestock Mixed Crops

EE
CI 0.037 0.073 0.057 0.027

Dt(·|R) 0.139 0.145 0.164 0.138
Dt(·|NR) 0.102 0.071 0.107 0.110

EM
CI 0.036 0.046 0.052 0.030

Dt(·|R) 0.095 0.086 0.138 0.099
Dt(·|NR) 0.059 0.040 0.085 0.070

NE
CI 0.048 0.049 0.050 0.044

Dt(·|R) 0.092 0.093 0.114 0.089
Dt(·|NR) 0.044 0.044 0.064 0.045

NW
CI 0.044 0.048 0.044 0.025

Dt(·|R) 0.112 0.122 0.105 0.069
Dt(·|NR) 0.069 0.074 0.061 0.044

SE
CI 0.042 0.063 0.050 0.028

Dt(·|R) 0.112 0.137 0.136 0.095
Dt(·|NR) 0.070 0.074 0.086 0.067

SW
CI 0.053 0.059 0.048 0.036

Dt(·|R) 0.175 0.186 0.185 0.145
Dt(·|NR) 0.122 0.127 0.137 0.109

WA
CI 0.063 0.064 0.038 0.034

Dt(·|R) 0.194 0.196 0.087 0.069
Dt(·|NR) 0.131 0.132 0.049 0.035

WM
CI 0.063 0.073 0.069 0.043

Dt(·|R) 0.170 0.192 0.184 0.131
Dt(·|NR) 0.108 0.119 0.115 0.087

YH
CI 0.048 0.053 0.039 0.043

Dt(·|R) 0.100 0.105 0.117 0.093
Dt(·|NR) 0.052 0.053 0.078 0.051

Table 2.2: Average static coordination inefficiency per region and level of specialisation.

These results hold only to a much lesser extent to WA, where the majority of farms
(63.6%) should not change their land allocation although the overwhelming majority of
farms are livestock farms.

2.4.3 Dynamic analysis: decomposing Luenberger productivity
growth

Table 2.4 presents the average coordination Luenberger productivity growth and its
decomposition into coordination technical change ∆CT and coordination inefficiency
change ∆CI for all regions. The chosen directional vectors ensure that all contempora-
neous DEA scores are feasible. Infeasibilities may arise for the components where the
time period of the observation differs from the time period of the reference technology.
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Figure 2.3: Distribution of optimal ( ) and actual ( ) land allocation in function of
the proportion of land allocated to crops.

region Livestock Mixed: 50 − 66% Livestock Mixed: 50 − 66% Crops Crops
- n. + - n. + - n. + - n. +

EE 0.022 0.078 0.099 0.014 0.000 0.040 0.015 0.004 0.066 0.118 0.080 0.465
EM 0.036 0.172 0.170 0.039 0.008 0.043 0.037 0.005 0.049 0.106 0.051 0.285
NE 0.132 0.279 0.308 0.023 0.002 0.055 0.028 0.010 0.036 0.051 0.011 0.065
NW 0.123 0.381 0.315 0.018 0.002 0.021 0.010 0.002 0.014 0.026 0.024 0.064
SE 0.068 0.135 0.192 0.049 0.002 0.061 0.041 0.001 0.079 0.093 0.082 0.199
SW 0.114 0.281 0.331 0.034 0.002 0.061 0.019 0.002 0.044 0.022 0.031 0.059
WA 0.169 0.636 0.182 0.005 0.001 0.003 0.002 0.000 0.000 0.000 0.000 0.001
WM 0.062 0.233 0.349 0.021 0.002 0.071 0.027 0.004 0.046 0.044 0.027 0.116
YH 0.072 0.227 0.251 0.040 0.005 0.029 0.025 0.005 0.026 0.115 0.032 0.174

Table 2.3: Share of farms that should allocate more land to livestock (-), crops (+) or
which mix should remain unchanged (n.) (averaged over all years).
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No easy solutions exist to avoid infeasibilities. Briec and Kerstens (2009) therefore re-
commend to simply report the number of infeasibilities (Table 2.7 in the Appendix).
The share of infeasibilities is very to moderately small, ranging from 4.67% to 23.67%.

Depending on the region, average Lt,t+1(NR) per year ranges from −29.5% to
8.8%. Whereas annual average productivity declines in EM (−29.5%), NE (−3.3%),
SE (−7.3%), SW (−1.1%) and YH (−4.1%), it increases in EE (4.9%), NW (8.8%),
WA (0.8%) and WM (1.7%). The average coordination Luenberger productivity growth
ranges from −9.7% to 15.9%, depending on the region. This is driven by ∆CT rather
than ∆CI. The ability to reallocate process-specific inputs over time does not change
substantially, whereas changes in the technology due to reallocation plays an important
role.

In what follows, we only discuss the results that are statistically significant at the 10%
level according to the Kolmogorov-Smirnov test reported in Table 2.6 in the Appendix.
Except for WM and YH, there are no significant differences in distribution of Lt,t+1(NR)
according to farm types. In contrast, the distributions of CLt,t+1 differ according to farm
types, although the sign of the statistical dominance is unclear in all regions except for
NE.

Figure 2.4 shows the average coordination Luenberger productivity growth over time
for each region. In every region, CLt,t+1 is driven by ∆CT . Several large fluctuations
occur for CLt,t+1 and ∆CT between some years, which may be caused by weather
conditions or by a few frontier farms that drive ∆CT .

Although the results show a clear pattern, we remain cautious as we have not taken
into account heterogeneity of land quality. We cannot rule out the possibility that the
results are partly an artifact of the data and the assumption of complete substitutability
between crop land use and livestock land use. This may be an issue especially in regions
with heterogeneous soils (e.g., NE and WA).

regions

EE EM NE NW SE SW WA WM YH

Lt,t+1(NR) 0.049 -0.295 -0.033 0.088 -0.073 -0.011 0.008 0.017 -0.041
Lt,t+1(NR) for livestock farms -0.009 -0.165 -0.035 0.107 -0.031 -0.017 0.007 0.015 0.044
Lt,t+1(NR) for mixed farms -0.025 -1.364 -0.004 -0.037 -0.191 -0.001 0.083 -0.017 -0.012
Lt,t+1(NR) for crop farms 0.061 -0.374 -0.028 -0.015 -0.095 0.005 0.083 0.021 -0.135

CLt,t+1 -0.072 0.159 0.019 -0.097 0.059 0.008 -0.006 0.051 0.014
CLt,t+1 for livestock farms -0.042 0.043 0.029 -0.112 0.027 0.014 -0.006 0.086 -0.048
CLt,t+1 for mixed farms -0.003 0.856 -0.030 -0.004 0.183 -0.005 -0.061 0.029 -0.015
CLt,t+1 for crop farms -0.079 0.228 -0.008 -0.013 0.077 -0.007 -0.061 -0.016 0.083

∆CT -0.072 0.161 0.015 -0.094 0.058 0.008 -0.002 0.056 0.016
∆CT for livestock farms -0.041 0.045 0.027 -0.111 0.026 0.015 -0.002 0.093 -0.045
∆CT for mixed farms 0.002 0.865 -0.046 0.017 0.179 -0.010 -0.059 0.026 -0.014
∆CT for crop farms -0.078 0.231 -0.016 -0.004 0.075 -0.012 -0.059 -0.015 0.084

∆CI -0.001 -0.003 0.004 -0.002 0.001 0.000 -0.004 -0.005 -0.002
∆CI for livestock farms -0.001 -0.002 0.002 -0.001 0.001 -0.001 -0.004 -0.007 -0.003
∆CI for mixed farms -0.004 -0.009 0.016 -0.021 0.004 0.004 -0.001 0.003 -0.001
∆CI for crop farms -0.001 -0.003 0.009 -0.009 0.002 0.004 -0.001 -0.001 -0.000

Table 2.4: Average Luenberger productivity change and its components.
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Figure 2.4: Decomposition of CLt,t+1 ( ◦ ) in ∆CI ( △ ) and ∆CT ( � ) per region.

2.5 Conclusions

This paper develops a nonparametric measure of coordination Luenberger productivity
growth where the subprocesses are explicitly modelled in the production technology. This
indicator allows us to assess the change in the farmers’ ability to allocate inputs over crop
and livestock outputs over time. Focussing on a large panel of English and Welsh farms
over the period 2007−2013, this paper demonstrates how better coordination of process-
specific inputs may increase efficiency and productivity. We decompose coordination
Luenberger productivity growth into coordination technical change and coordination
inefficiency change. We compute the efficiency and productivity measures separately
per region.

The static analysis shows a clear pattern: crop farms have a lower coordination
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inefficiency than livestock farms, i.e., they allocate their process-specific inputs more
adequately. This result is statistically significant across all regions. Furthermore, coordi-
nation inefficiency in mixed farms is higher (lower) than coordination inefficiency in crop
(livestock) farms. Coordination efficiency gains are associated with allocating more land
use to crop production. In contrast, no such pattern exists considering the results for
the non-reallocative directional distance function, which is now the standard way of me-
asuring technical inefficiency. This demonstrates that richer modelling of subprocesses
uncovers an additional source of inefficiency due to misallocation of resources.

According to the dynamic analysis, average non-reallocative Luenberger producti-
vity growth per year ranges from −29.5% to 8.8%, with considerable differences across
regions. The Kolmogorov-Smirnov test finds almost no significant distributional diffe-
rences in farm types. We further find that average coordination Luenberger producti-
vity growth ranges from −9.7% to 15.9%, depending on the region. This is driven by
coordination technical change rather than coordination inefficiency change. The ability
to reallocate process-specific inputs over time does not change substantially, whereas
changes in the technology due to reallocation plays an important role. The Kolmogorov-
Smirnov test shows significant distributional differences in farm types, which contrasts
the findings regarding the non-reallocative Luenberger productivity indicator. However,
we find inconclusive evidence about which farm type stochastically dominates. Again,
modelling subprocesses and allowing for reallocation reveal differences in optimally allo-
cating resources over time. These differences are linked to heterogeneity in production
technologies of different farm types.

Although researchers and policy makers identified an interest in stimulating mixed
agriculture due to its environmental benefits, our results indicate that caution may be
required. Since coordination efficiency gains are generally associated with more crop
production for all farm types, one should stimulate mixed farming in livestock farms
rather than crop farms. However, this does not necessarily imply that crop farms are
more able to optimally allocate resources over time. Despite the clear patterns in the
results, we remain prudent about the policy implications as the clear patterns may partly
be an artifact of the data and the assumption of complete substitutability between crop
land use and livestock land use.

We have several recommendations for future research. First, we recommend opening
the black-box of efficiency and productivity by explicitly modelling the subprocesses.
This can guide decision makers in coordinating the subprocesses to enhance efficiency
and productivity. Second, this framework can be extended by including stochastic factors.
Agricultural production is impacted by weather conditions, which cannot be influenced
by the farms through choices of inputs and outputs. Efficiency is biased downwards
(upwards) under bad (good) weather conditions. We have only partially controlled for
this issue by running the nonparametric models per region. This problem can be dealt
with in a more structural way by using Stochastic Frontier Analysis or making DEA
conditional on environmental variables (de Witte and Kortelainen, 2013; Jeong et al.,
2010). Finally, this framework can be augmented by taking into account intertemporal
linkages. For instance, manure from livestock enterprises can be modelled as future
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inputs of crop production. Applied to the context of English and Welsh agriculture, this
will be possible if more fertiliser surveys become available.



44 CHAPTER 2. TO MIX OR SPECIALISE?

2.A Additional Tables

Region

EE EM NE NW SE SW WA WM YH

CI
Livestock - Mixed 0.227 0.028 0.920 0.057 0.676 0.016 0.001 0.752 0.346
Livestock - Crops 0.000 0.000 0.069 0.000 0.000 0.000 0.000 0.000 0.003

Crops - Mixed 0.000 0.000 0.228 0.008 0.000 0.000 0.692 0.000 0.278

Dt(·|R)
Livestock - Mixed 0.117 0.000 0.166 0.097 0.274 0.903 0.000 0.673 0.489
Livestock - Crops 0.583 0.111 0.627 0.000 0.000 0.000 0.000 0.000 0.299

Crops - Mixed 0.127 0.001 0.130 0.024 0.000 0.000 0.673 0.001 0.197

Dt(·|NR)
Livestock - Mixed 0.000 0.000 0.089 0.357 0.016 0.263 0.000 0.935 0.030
Livestock - Crops 0.000 0.000 0.648 0.000 0.728 0.001 0.000 0.001 0.908

Crops - Mixed 0.550 0.072 0.083 0.060 0.013 0.001 0.762 0.011 0.038

Table 2.5: P-values of Wilcoxon rank test.

Region

EE EM NE NW SE SW WA WM YH

Lt,t+1(NR)
Livestock - Mixed 0.553 0.547 0.547 0.147 0.917 0.835 0.291 0.061 0.640
Livestock - Crops 0.274 0.254 0.183 0.123 0.957 0.563 0.291 0.148 0.046
Crops - Mixed 0.993 1.000 1.000 0.722 0.998 1.000 1.000 0.980 0.812

CLt,t+1

Livestock - Mixed 0.179 0.410 0.338 0.784 0.073 0.334 0.037 0.102 0.515
Livestock - Crops 0.000 0.000 0.846 0.090 0.000 0.001 0.037 0.002 0.017
Crops - Mixed 0.001 0.003 0.995 0.330 0.014 0.091 1.000 0.366 0.799

∆CT
Livestock - Mixed 0.149 0.878 0.503 0.338 0.202 0.080 0.049 0.501 0.626
Livestock - Crops 0.000 0.000 0.603 0.005 0.000 0.000 0.049 0.002 0.008
Crops - Mixed 0.002 0.001 0.885 0.083 0.027 0.107 1.000 0.564 0.202

∆CI
Livestock - Mixed 0.154 0.437 0.313 0.548 0.985 0.082 0.229 0.648 0.743
Livestock - Crops 0.000 0.001 0.587 0.020 0.001 0.000 0.229 0.001 0.068
Crops - Mixed 0.059 0.002 0.894 0.271 0.016 0.067 1.000 0.496 0.962

Table 2.6: P-values of Kolmogorov-Smirnov test for non-reallocative Luenberger pro-
ductivity growth, coordination Luenberger productivity growth, coordination technical
change and coordination inefficiency change.
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Region Dt+1(Xt, Yt; gt|NR) Dt(Xt+1, Yt+1; gt+1|NR) Dt+1(Xt, Yt; gt|R) Dt(Xt+1, Yt+1; gt+1|R)

EE 14.06 13.75 8.97 8.61
EM 13.67 13.99 10.32 9.36
NE 21.63 16.79 15.75 12.26
NW 14.95 13.52 11.42 9.66
SE 16.92 11.70 12.10 8.09
SW 9.52 9.18 7.84 6.84
WA 6.92 9.49 4.67 7.05
WM 18.49 12.71 14.17 8.55
YH 23.67 17.11 18.35 12.62

Table 2.7: Share of infeasibilities over all years (in %).
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2.B Linear Programmes

Dt(X0,t, Y0,t; gt = (gx,t, gy,t)|NR) =

max
β,

λk,t,γk,t≥0

β

s.t.
K∑

k=1

λk,tX
C,m
k,t ≤ XC,m

0,t − βgC,m
x,t ∀m /∈ C, (2.13a)

K∑

k=1

λk,tX
C,m
k,t ≤ XC,m

0,t ∀m ∈ C, (2.13b)

K∑

k=1

λk,tQ
f
k,t ≤ Qf

0,t − βgf
Q,t ∀f /∈ F, (2.13c)

K∑

k=1

λk,tQ
f
k,t ≤ Qf

0,t ∀f ∈ F, (2.13d)

K∑

k=1

λk,t(Y
C
k,t + ZC

k,t) ≥ (YC
0,t + ZC

0,t) + βgC
y,t, (2.13e)

K∑

k=1

λk,t = 1, (2.13f)

K∑

k=1

γk,tX
L,m
k,t ≤ XL,m

0,t − βgL,m
x,t ∀m /∈ C, ∀m /∈ H, (2.13g)

K∑

k=1

γk,tX
L,m
k,t ≤ XL,m

0,t ∀m ∈ C, (2.13h)
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k=1

γk,t(Z
C,h
k,t + XL,h

k,t ) ≤ (ZC,h
0,t + XL,h

0,t ) − βgh
x,t ∀h ∈ H, (2.13i)
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k=1

γk,tQ
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k,t ≤ Qf

0,t − βgf
Q,t ∀f /∈ F, (2.13j)
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0,t ∀f ∈ F, (2.13k)

K∑

k=1

γk,tY
L
k,t ≥ YL

0,t + βgL
y,t, (2.13l)
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k=1

γk,t = 1. (2.13m)
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Dt(X0,t, Y0,t; gt = (gx,t, gy,t)|R) =

max
β,

λk,t,γk,t≥0,

XC
0,t,XL

0,t≥0

β (2.14a)

s.t. (2.13a) − (2.13m) (2.14b)

XC,m
0,t + XL,m

0,t = Xm
0,t ∀m ∈ C, (2.14c)

∑

∀i∈{1,...,NC}\C

pC,i
0,t XC,i

0,t +
∑

∀j∈{1,...,NL}\C

pL,j
0,t XL,j

0,t = PEXP0,t (2.14d)





Chapter 3

Decomposing the

Luenberger-Hicks-Moorsteen Total

Factor Productivity indicator: An

application to U.S. agriculture
“By far the largest portion of the literature on total factor productivity is
devoted to problems of measurement rather than to problems of explanation.
In recognition of this fact changes in total factor productivity have been given
such labels as The Residual or The Measure of Our Ignorance.”

— Dale W. Jorgenson and Zvi Griliches1

3.1 Introduction

Assessing the drivers of productivity growth is important for business and economic po-
licy. Their identification allows monitoring of industries and can guide policymakers in
their decisions. Hence, an abundant literature has sought to decompose various measu-
res of productivity growth into components of technical change, efficiency change and
scale efficiency change.2 The literature has largely focused on ratio-based productivity
“indexes”. Yet, O’Donnell (2012a) recently shows that not all such decomposable indexes
are “multiplicatively complete” (i.e., consisting of a ratio of an output aggregator to an
input aggregator), while all multiplicatively complete indexes are decomposable in this
way. He demonstrates that the class of multiplicatively complete productivity indexes
includes Laspeyres, Paasche, Fischer, Törnqvist and Bjurek (1996)’s Hicks-Moorsteen
indexes, but does not include the popular Malmquist index of Caves et al. (1982).

0This chapter is based on joint work with Frederic Ang (Swedish University of Agricultural Sciences)
and a slightly different version was published as Ang and Kerstens (2017a) in European Journal of
Operational Research.

1Jorgenson and Griliches (1967, p.249)
2See Färe et al. (1998) and Grosskopf (2003) for historical overviews.

49
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Ratio-based productivity indexes are undefined when one or more of the variables
are equal or close to zero (Balk et al., 2003). Difference-based productivity “indicators”
do not suffer from this problem and are thus particularly useful in regulatory contexts.

Difference-based indicators were developed to measure Total Factor Productivity
(TFP) growth based on Luenberger (1992)’s shortage function. This directional distance
function, introduced by Chambers et al. (1996b) in a production context, extends the
Shephard input and output distance functions by allowing for simultaneous contraction
of inputs and expansion of outputs. Chambers (2002) introduced a general difference-
based Luenberger productivity indicator which can be decomposed in a technical change
and efficiency change component (Chambers et al., 1996b).3 Since its introduction, it has
frequently been applied in empirical applications (e.g., Nakano and Managi (2008)) and
additional decompositions of its technical change component (e.g., Briec and Peypoch
(2007)) and efficiency change component (e.g., Epure et al. (2011)) have been proposed
in the literature. However, the Luenberger productivity indicator is not “additively
complete” (i.e., consisting of a difference between an output aggregator and an input
aggregator) and thus cannot be disentangled into components of output growth and
input growth.

Briec and Kerstens (2004) introduced the Luenberger-Hicks-Moorsteen (LHM) TFP
indicator, which is a difference-based, additively complete alternative to the ratio-based,
multiplicatively complete Hicks-Moorsteen index.4 Notwithstanding the attractive pro-
perties of the LHM TFP indicator, only few empirical studies can be found in the
literature (e.g., Barros et al. (2008) and Managi (2010)). One possible reason for the
limited number of applications is the fact that a full decomposition into components
of technical change, technical inefficiency change and scale inefficiency change has hit-
herto not been developed. A first effort was made by Managi (2010) who decomposed
the LHM TFP indicator into components of technical change and (in)efficiency change.
However, this decomposition lacks a scale inefficiency change component and does not
correctly capture technical change and technical inefficiency change (see Appendix 3.A).
No full decomposition of a difference-based TFP indicator being additively complete is
thus presently known in the literature.

The current paper contributes to the existing literature by introducing a decomposi-
tion of the additively complete LHM TFP indicator into components of technical change,
technical inefficiency change and scale inefficiency change. Our decomposition is general
in that it does not require convexity or differentiability of the technology set. It is simi-

3The “economic” approach to productivity measurement requires price information and if in addition
(i) some assumptions can be made about firm behavior and (ii) the technology is approximated by a
known flexible functional form up to the second order, then one can use a “superlative” index as advocated
by Diewert (1976). Chambers (2002) showed that the Bennet-Bowley indicators are exact and superlative
approximations of the Luenberger productivity indicator under (i) profit-maximizing behavior and (ii)
a quadratic technology directional distance function. Recently, Ang and Kerstens (2017b) show that
the Bennet-Bowley profit indicator is also an exact and superlative approximation for the LHM TFP
indicator under a suitable price normalization.

4See Briec et al. (2012) for exact relations between the Luenberger-Hicks-Moorsteen TFP indicator
and the Hicks-Moorsteen TFP index.
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lar to Diewert and Fox (2014, 2017)’s decomposition of the ratio-based Hicks-Moorsteen
TFP index.

Using a nonparametric framework, we illustrate the decomposition with an empirical
application to state-level data of the U.S. agricultural sector over the period 1960−2004.
Since our decomposition is suitable for non-convex as well as convex technologies, we
demonstrate its flexibility by using the Free Disposal Hull as well as Data Envelopment
Analysis. To the best of our knowledge, no other studies using the same dataset have
investigated the issue of potential non-convexities. However, we believe that such an
investigation is particularly relevant in the context of the agricultural sector. Inputs
such as capital equipment are nondivisible, potentially leading to non-convexities.

This paper is structured as follows. The next section describes Luenberger’s directi-
onal distance function and the LHM TFP indicator. We then introduce our complete
decomposition and apply this to state-level data of the U.S. agricultural sector over the
period 1960 − 2004. The final section concludes.

3.2 The Luenberger-Hicks-Moorsteen TFP indicator

Let xt ∈ R
n
+ be the nonnegative inputs that are used to produce nonnegative outputs

yt ∈ R
m
+ . We define the technology set in the usual way:

Yt =
{

(xt, yt) ∈ R
n+m
+ |xt can produce yt

}

.

Furthermore, we make the following minimal assumptions on the technology set
(Chambers, 2002):

Axiom 3.1 (Closedness). Yt is closed.

Axiom 3.2 (Free disposability of inputs and outputs). if (x′
t, −y′

t) ≥ (xt, −yt) then
(xt, yt) ∈ Y t ⇒ (x′

t, x′
t) ∈ Yt.

Axiom 3.3 (Inaction). Inaction is possible: (0n, 0m) ∈ Y t.

Convexity of the technology set is thus not a necessary condition for our decomposi-
tion.5 We illustrate this in our empirical application.

Luenberger’s directional distance function is a measure of technical inefficiency as it
simultaneously contracts inputs and expands outputs. The directional distance function
proposed by Chambers et al. (1996b) is:

Dt(xt, yt; gt) = sup
{

β ∈ R : (xt − βgi
t, yt + βgo

t ) ∈ Yt

}

, (3.1)

5In fact, the LHM TFP indicator and our decomposition are applicable to a wider range of non-
convex models that satisfy the above axioms and for which the directional distance function can be
defined. Examples of these non-convex models include the Constant-Elasticity-of-Substitution-Constant-
Elasticity-of-Transformation model of Färe et al. (1988), relaxed convexity model of Petersen (1990) and
Bogetoft (1996), selective convexity model of Podinovski (2005) and B-convexity model of Briec and
Liang (2011).
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if (xt − βgi
t, yt + βgo

t ) ∈ Y t for some β and Dt(xt, yt; gt) = −∞ otherwise. Here,
gt = (gi

t, go
t ) represents the direction vector. The directional distance function is a

special case of Luenberger (1992)’s shortage function.

We denote the time-related directional distance function for (a, b) ∈ {t, t + 1} ×
{t, t + 1}:

Db(xa, ya; ga) = sup
{

β ∈ R : (xa − βgi
a, ya + βgo

a) ∈ Yb

}

.

Next, we turn to the Luenberger-Hicks-Moorsteen (LHM) TFP indicator proposed
by Briec and Kerstens (2004). This can be seen as the difference-based equivalent of the
ratio-based Hicks-Moorsteen (HM) TFP index. They define the LHM TFP indicator
with base period t as the difference between a Luenberger output quantity indicator and
a Luenberger input quantity indicator:

LHMt(xt+1, yt+1, xt, yt; gt, gt+1) (3.2)

=
[

Dt(xt, yt; (0, go
t )) − Dt(xt, yt+1; (0, go

t+1))
]

−
[

Dt(xt+1, yt; (gi
t+1, 0)) − Dt(xt, yt; (gi

t, 0))
]

≡ LOt(xt, yt, yt+1; go
t , go

t+1) − LIt(xt, xt+1, yt; gi
t, gi

t+1).

Similarly, a base period t + 1 LHM TFP indicator is defined as:

LHMt+1(xt+1, yt+1, xt, yt; gt, gt+1) (3.3)

=
[
Dt+1(xt+1, yt; (0, go

t )) − Dt+1(xt+1, yt+1; (0, go
t+1))

]

−
[

Dt+1(xt+1, yt+1; (gi
t+1, 0)) − Dt+1(xt, yt+1; (gi

t, 0))
]

≡ LOt+1(xt+1, yt+1, yt; go
t , go

t+1) − LIt+1(xt, xt+1, yt+1; gi
t, gi

t+1).

O’Donnell (2012a, p.258, footnote 5) defines additive completeness as follows:

Definition 3.1 (Additive completeness). Formally, let T FPI(xt, qt, xs, qs) denote an
index number that compares TFP in period s with TFP in period t using period s as a
base. T FPI(xt, qt, xs, qs) is additively complete if and only if it can be expressed in the
form T FPI(xt, qt, xs, qs) = Q(qt)−Q(qs)−X(xt)+X(xs) where Q(·) and X(·) are non-
negative non-decreasing functions satisfying the translation property Q(q+λq) = Q(q)+λ
and X(x + λx) = X(x) + λ for λ > 0.6

LHMt(·) and LHMt+1(·) are “additively complete” in O’Donnell’s sense. This can
be verified from their definitions above where the directional distance function, along
with its corresponding direction vector, serves as the output (using (0, go

s)) and input
(using (gi

s, 0)) aggregator functions.7

6Balk et al. (2003, p.157) show that the input quantity change indicators LIt(·) and LIt+1(·) with
gi

t = gi
t+1 satisfy the desirable properties for a quantity change indicator listed in Diewert (2005). This

equally applies to the output quantity change indicators LOt(·) and LOt+1(·) with go
t = go

t+1.
7Luenberger (1992)’s shortage function differs from Chambers (2002)’ Luenberger productivity indi-

cator. The shortage function satisfies the translation property. It is an aggregator function that can be
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Finally, one takes an arithmetic average of LHMt and LHMt+1 to avoid an arbitrary
choice of base periods:8

LHMt,t+1(xt, yt, xt+1, yt+1; gt, gt+1) =
1

2
[LHMt + LHMt+1] . (3.4)

The HM TFP index is defined as the ratio of an output index to an input index. Similarly,
we can show that the LHM TFP indicator equals the difference between an output
indicator and an input indicator, which are themselves arithmetic averages of two output
and two input indicators:

LHMt,t+1 =
1

2
[LOt + LOt+1] − 1

2
[LIt + LIt+1] (3.5)

≡ LOt,t+1 − LIt,t+1.

3.3 Decomposition of the Luenberger-Hicks-Moorsteen
indicator

This section introduces our LHM decomposition along with illustrative figures in the one
input - one output dimension to provide the intuition. We show an example with a non-
convex technology (i.e., Free Disposal Hull), as convexity is not a necessary assumption
for our decomposition. Note, however, that one can also use our approach for a convex
technology.

In line with the decomposition of the HM TFP index, the LHM TFP indicator
can be decomposed using the output direction or input direction.9 We focus on the
decomposition using the output direction, but provide a similar decomposition using the
input direction in Appendix 3.B. Our LHM decomposition is a specific case (analogous

used to compute components of an additively complete indicator (such as the LHM TFP indicator), but
is not additively complete. Chambers (2002) defines the Luenberger productivity indicator as follows:

Lt,t+1(xt, yt, xt+1, yt+1; gt, gt+1)

=
1

2

[
(Dt(xt, yt; gt) − Dt(xt+1, yt+1; gt+1))

+ (Dt+1(xt, yt; gt) − Dt+1(xt+1, yt+1; gt+1))
]

,

All directional vectors are determined in the input direction as well as the output direction, i.e., ga =
(gi

a, go
a) > 0. This prevents us from disentangling the indicator into separate output and input aggregator

functions.
8This average can be harder to interpret in regulatory and managerial contexts in which a clearer

target is required. This can easily be accounted for by a different choice of weights for both periods: i.e.,
we can define LHMt,t+1 = ζLHMt + (1 − ζ)LHMt+1 with weights ζ ∈ [0, 1]. One can then for example
set ζ = 0 or ζ = 1. These weights trickle down in the technical change and scale inefficiency change
components of our decomposition in a straightforward way.

9The technical change and technical inefficiency change components in particular are completely
determined by this choice. The additive completeness property of the LHM TFP indicator can guide
this decision by checking whether LHM TFP is mostly driven by LOt,t+1 or LIt,t+1. This contrasts with
the Luenberger productivity indicator where both inputs and outputs contribute to its components.
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to the multiplicatively complete case discussed in Section 3.7 of O’Donnell (2012a))
of an additively complete indicator that uses the directional distance function as the
aggregator function for both inputs and outputs. Hence, in our case the mix efficiency
change components are all 0 and our decomposition consists of three components:

LHMt,t+1 = ∆T o
t,t+1 + ∆T EIo

t,t+1 + ∆SECo
t,t+1, (3.6)

representing technical change, technical inefficiency change and scale inefficiency change
respectively.10 Given the close relation to the HM TFP index, it is no surprise that our
decomposition is similar to Diewert and Fox (2014, 2017)’s decomposition of the HM
TFP index.

The technical change component is

∆T o
t,t+1 =

1

2
{[Dt+1(xt, yt; (0, go

t )) − Dt(xt, yt; (0, go
t ))] (3.7)

+
[

Dt+1(xt+1, yt+1; (0, go
t+1)) − Dt(xt+1, yt+1; (0, go

t+1))
]}

≡ 1

2

{
∆T o

t + ∆T o
t+1

}
.

Technical change ∆T o
t,t+1 is the arithmetic average of ∆T o

t and ∆T o
t+1. Figure 3.1 de-

picts these technical change components. The arithmetic average is used to avoid an
arbitrary choice of the observation under evaluation. Here, ∆T o

t measures the difference
in efficiency for observation (xt, yt) evaluated against production frontier t + 1 and t.
An upward (downward) shift of the production frontier between t and t + 1, indicating
technical progress (regress), results in a positive (negative) difference. ∆T o

t+1 is similar
to ∆T o

t but evaluated for observation (xt+1, yt+1). Thus, technical change measures
(local) shifts of the production frontier itself.

The technical inefficiency change component is

∆T EIo
t,t+1 = Dt(xt, yt; (0, go

t )) − Dt+1(xt+1, yt+1; (0, go
t+1)), (3.8)

and measures the change between period t and period t + 1 in the relative position
to the production frontier. Positive (negative) values of ∆T EIo

t,t+1 indicate efficiency
improvement (deterioration) over time: (xt+1, yt+1) is located closer to (farther from)
the t + 1 frontier than (xt, yt) was to the t frontier. In Figure 3.2 this means that
Dt+1(xt+1, yt+1) is smaller (larger) than Dt(xt, yt). Note that ∆T EIo only measures
the evolution in technical efficiency of the observation under consideration without taking
into account changes of the production frontier over time.

This technical inefficiency change component can be further decomposed in the same
way as done by Epure et al. (2011) for the Luenberger indicator into “pure” inefficiency
and, for example, congestion changes.

10Managi (2010)’s decomposition lacks a scale inefficiency change component. We refer to Appen-
dix 3.A for a discussion.
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Figure 3.1: Technical change.
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Figure 3.2: Technical inefficiency change.
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Finally, from the residual

LHMt,t+1−∆T o
t,t+1 − ∆T EIo

t,t+1 (3.9)

=
1

2

{[
Dt(xt+1, yt+1; (0, go

t+1)) − Dt(xt, yt+1; (0, go
t+1))

]

+ [Dt+1(xt+1, yt; (0, go
t )) − Dt+1(xt, yt; (0, go

t ))]}

−1

2

{[

Dt(xt+1, yt; (gi
t+1, 0)) − Dt(xt, yt; (gi

t, 0))
]

+
[

Dt+1(xt+1, yt+1; (gi
t+1, 0)) − Dt+1(xt, yt+1; (gi

t, 0))
]}

,

we can distill the scale inefficiency change component as follows. First, we define the
projections of yt and yt+1 on the production frontier at time t using notation of Diewert
and Fox (2017):

y∗
t = yt + Dt(xt, yt; (0, go

t ))go
t (3.10a)

y∗∗
t+1 = yt+1 + Dt(xt+1, yt+1; (0, go

t+1))go
t+1 (3.10b)

Similarly, we define the projections of yt and yt+1 on the production frontier at time
t + 1:

y∗∗
t = yt + Dt+1(xt, yt; (0, go

t ))go
t (3.11a)

y∗
t+1 = yt+1 + Dt+1(xt+1, yt+1; (0, go

t+1))go
t+1 (3.11b)

Then, respectively adding and subtracting Dt(xt, yt; (0, go
t )) and Dt+1(xt+1, yt+1; (0, go

t+1))
to and from (3.9), and using the translation property of the directional distance function
and the definitions of the projections above, we find the scale inefficiency change com-
ponent:

∆SECo
t,t+1 =

1

2

{[
Dt(xt, y∗

t ; (0, go
t )) − Dt(xt, y∗∗

t+1; (0, go
t+1))

]
(3.12)

−
[

Dt(xt+1, yt; (gi
t+1, 0)) − Dt(xt, yt; (gi

t, 0))
]

+
[
Dt+1(xt+1, y∗∗

t ; (0, go
t )) − Dt+1(xt+1, y∗

t+1; (0, go
t+1))

]

−
[

Dt+1(xt+1, yt+1; (gi
t+1, 0)) − Dt+1(xt, yt+1; (gi

t, 0))
]}

≡ 1

2

{
SOCo

t − SICo
t + SOCo

t+1 − SICo
t+1

}

≡ 1

2

{
∆SECo

t + ∆SECo
t+1

}
,

which has the interpretation of measuring changes in “global” returns to scale in line
with Diewert and Fox (2017). As a result, our scale inefficiency change component
does not require differentiability or convexity of the production technology. Figure 3.3
illustrates the intuition behind (3.12). Again, the arithmetic average of ∆SECo

t and
∆SECo

t+1 is used to avoid an arbitrary choice of base period for the technology. Both
components have a similar interpretation as a finite difference approximation of the
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frontier’s gradient. ∆SECo
t is a finite difference approximation of the frontier t’s gradient

and measures the change in inputs and outputs along the frontier when going from (xt, yt)
to (xt+1, yt+1). The change in inputs and outputs is measured separately: the SOCo

t

(SICo
t ) subcomponent of ∆SECo

t keeps the inputs (outputs) constant while measuring
the change in the level of outputs (inputs).

t + 1

t

bb

b b

b

b

b

b
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t+1

SOCo
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t(xt, yt) (xt+1, yt)
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(xt, y∗
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(xt, y∗∗
t+1)
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t+1)
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y

Figure 3.3: Scale inefficiency change.

This “residual” approach of Diewert and Fox (2017) differs from the traditional
“Constant-Returns-to-Scale-Variable-Returns-to-Scale” (CRS-VRS) approach of Färe et al.
(1994b) for the Malmquist index and Epure et al. (2011) for the Luenberger indicator.11

The CRS-VRS approach compares the VRS frontier to a (hypothetical) benchmark CRS
frontier to detect changes in returns to scale over time. In contrast, the residual approach
directly considers changes in the frontier’s gradient over time to assess scale inefficiency
change. Thus, the main difference is that the Färe et al. (1994b) approach relies on
two frontiers (VRS and CRS) to measure scale inefficiency change, while the residual
approach of Diewert and Fox (2017) only uses one frontier (VRS in our case).

From a theoretical point of view, CRS is often not a realistic assumption whereby this
hypothetical CRS frontier to measure changes in returns-to-scale is not appropriate. In
contrast, the main strength of the residual approach is that we do not need to introduce

11Grifell-Tatjé and Lovell (1995) show that the Malmquist index allowing for VRS is biased when
measuring productivity for a non-constant returns to scale technology. Bjurek (1996) points out that
the Hicks-Moorsteen index does not suffer from this shortcoming. The reason is that the Malmquist
index only measures changes in technology in either output or input orientation. Therefore, the output
(input) Malmquist index does not pick up the effect of input (output) changes due to returns-to-scale
which results in a bias under increasing or decreasing returns-to-scale.
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a CRS component into the LHM TFP indicator to detect changes in returns-to-scale. If
the technology exhibits CRS then this will be automatically reflected in zero values for
the ∆SECo

t,t+1 component even if we use a VRS approximation. Of course, depending
on the application at hand and results of a preliminary test on returns-to-scale, the LHM
TFP indicator and our decomposition can also be computed under other returns-to-scale
assumptions. From a practical point of view, an obvious drawback to the “CRS-VRS”
approach is that it is sensitive to outliers, because the CRS frontier can be spanned
by a few (extreme) observations. This drawback can be reduced by using appropriate
techniques such as order-m (Cazals et al., 2002) or order-α (Aragon et al., 2005).

The accuracy of the residual approach to approximate the gradient of the frontier
depends on the “step-size”, i.e., the gap SICo

t and SICo
t+1 between the frontier pro-

jections of xt and xt+1 for the decomposition using output directions. The larger the
step-size, the cruder the approximation.12 Thus, a big change in inputs for a DMU from
period t to period t + 1 can give a cruder approximation of the frontier’s gradient. This
is the major disadvantage of the residual approach. Thus, both approaches have their
own distinct advantages and disadvantages from a theoretical and a practical point of
view. Future work might compare both approaches to understand in which situations
each approach works well.

As a final remark, observe that both ∆T o
t,t+1 and ∆SECo

t,t+1 are the arithmetic
average of a Laspeyres (using base period t) and a Paasche (using base period t + 1)
type indicator.

3.4 Empirical application: U.S. agriculture

There is considerable interest in measuring and decomposing TFP of the economy in
general and its different sectors. Measurement of TFP in agriculture, in particular, is
important to assess our continuing ability to feed an increasing world population on a
fixed amount of natural resources (such as land). Thus, policy makers are interested to
learn about the underlying drivers of TFP growth and the contribution of output changes
and input changes on TFP. The US department of agriculture (USDA) provides state
level panel data on agricultural inputs and outputs alongside its estimates of productivity
growth. These data are publicly available which also partially explains its popularity
among previous research. Previous studies of TFP growth on the USDA data include
Luh and Stefanou (1991), Zof́ıo and Lovell (2001), Ball et al. (2004) and O’Donnell
(2012b) among others. We investigate LHM TFP growth of U.S. agriculture across 48
states.13 We use our newly developed LHM decomposition to determine the main drivers
of productivity growth. Specifically, we investigate the extent to which LHM TFP growth

12This step-size is analogous to h in the commonly used definition of a derivative of a function f :
f ′(x) = limh→0

f(x+h)−f(x)
h

. The more h approaches zero, the better the approximation of the derivative
at the evaluated point. Likewise, the smaller SICo

t and SICo
t+1, the better the approximation of the

frontier’s gradient.
13The dataset does not include data from Alaska and Hawaii.
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is driven by output growth and input growth, on the one hand, and technical change,
technical inefficiency change and scale inefficiency change, on the other hand.

3.4.1 Data description

We use U.S. state-level agricultural panel data compiled by the U.S. Department of Agri-
culture (USDA). The data ranges from 1960 to 2004 and includes prices and quantities
for 3 outputs (crops, livestock and other) and 4 inputs (land, intermediate, capital and
labor). Table 3.1 contains mean values and the coefficient of variation per subperiod of
11 years. A full description of the data can be found in USDA (2016). The summary
statistics suggest that aggregate production has substantially increased. Aggregate use
of land, labor and to a lesser extent capital have decreased, while aggregate intermediate
input use has increased. The low coefficient of variation of land use reveals that this
production factor cannot be adjusted instantaneously.
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Period Pacific Mountain Northern Plains Southern Plains Corn Belt Southeast Northeast Lake States Appalachian Delta States

1960/71 Mean 3300931.169 7255411.046 5840331.457 6292994.186 5004879.143 2215366.354 1768427.738 2444184.002 2356925.337 1520081.600
CV 0.041 0.039 0.007 0.010 0.007 0.070 0.107 0.043 0.056 0.029

1971/82 Mean 2893980.439 6720070.751 5687708.224 5781558.555 4767466.397 1773007.009 1394621.216 2199276.592 1956513.091 1343990.332
Land CV 0.015 0.007 0.011 0.017 0.009 0.027 0.014 0.014 0.021 0.016

1982/93 Mean 2710142.283 6508197.735 5544756.703 5535859.150 4632340.008 1484494.228 1267039.795 2112296.486 1818028.473 1206858.098
CV 0.029 0.011 0.004 0.004 0.011 0.067 0.055 0.024 0.030 0.039

1993/04 Mean 2590402.638 5967026.474 5581123.690 5718432.955 4582192.192 1428024.529 1190460.233 2085066.363 1802684.458 1209153.491
CV 0.016 0.035 0.005 0.011 0.007 0.020 0.021 0.009 0.013 0.018

1960/71 Mean 6388062.631 5374177.714 9020391.093 5551339.202 16939475.421 4322275.998 5303636.777 8170759.798 4824174.845 3346989.032
CV 0.047 0.125 0.092 0.126 0.048 0.119 0.034 0.027 0.064 0.125

1971/82 Mean 7546312.374 7223653.517 11783582.906 7805959.230 18720865.969 5445467.048 5643208.149 9328635.249 5770043.712 4124055.132
Intermediate CV 0.111 0.091 0.128 0.094 0.074 0.112 0.090 0.112 0.093 0.086

1982/93 Mean 8462752.863 6899795.667 12869397.188 7703305.897 16985319.256 5663158.403 5712198.784 9970093.780 5939957.239 4740621.090
CV 0.058 0.029 0.032 0.070 0.056 0.037 0.026 0.057 0.022 0.130

1993/04 Mean 11556159.900 8073898.489 14492935.479 8891404.135 17845564.638 6924523.321 6077658.726 11068114.621 7896907.296 6121353.879
CV 0.082 0.070 0.078 0.064 0.047 0.066 0.054 0.059 0.119 0.031

1960/71 Mean 2277278.160 1965743.390 3839212.101 2420531.367 7485812.020 1409850.653 2761049.666 4235861.165 2550447.895 1202072.627
CV 0.020 0.058 0.054 0.056 0.084 0.070 0.021 0.030 0.067 0.115

1971/82 Mean 2583856.991 2443132.645 4662093.957 3052573.807 9993671.366 1854854.361 3040945.252 4891432.936 3233950.577 1718949.272
Capital CV 0.079 0.084 0.072 0.085 0.095 0.103 0.068 0.075 0.086 0.106

1982/93 Mean 2340101.255 2292679.329 4213514.172 2901421.560 8602936.055 1665912.719 2711313.433 4626726.086 2817472.143 1619430.276
CV 0.128 0.114 0.108 0.108 0.159 0.147 0.124 0.131 0.141 0.144

1993/04 Mean 1983069.814 1936337.760 3376963.177 2316924.548 6070538.603 1370479.997 1983837.703 3562676.158 2361032.305 1264252.022
CV 0.029 0.016 0.026 0.032 0.056 0.023 0.052 0.040 0.016 0.020

1960/71 Mean 11826308.223 7251927.972 11451651.884 10457257.796 26640405.728 8806948.892 12416331.593 17517663.881 16278275.980 8020645.246
CV 0.124 0.089 0.134 0.141 0.164 0.117 0.182 0.141 0.171 0.192

1971/82 Mean 10262405.279 6501263.073 10321361.426 7673646.814 20171125.527 6484264.056 9595326.458 13841201.345 9745925.952 4745991.646
Labor CV 0.059 0.033 0.062 0.096 0.066 0.101 0.040 0.030 0.137 0.149

1982/93 Mean 9271807.049 6202223.028 9061470.223 6519170.104 16138668.519 4774474.559 8008139.689 12006149.317 7133646.807 3299937.462
CV 0.064 0.088 0.117 0.051 0.095 0.074 0.136 0.126 0.163 0.090

1993/04 Mean 10210352.950 5202355.190 7081823.093 7023374.727 11939104.652 4363279.813 6389996.042 7731857.592 6268745.715 2921548.411
CV 0.083 0.043 0.056 0.047 0.097 0.042 0.052 0.136 0.050 0.059

1960/71 Mean 9125685.221 4287806.931 7041572.037 4374994.511 14332254.967 4522798.287 4261514.605 5899717.197 5730387.079 3013945.475
CV 0.080 0.081 0.111 0.061 0.087 0.054 0.036 0.063 0.050 0.093

1971/82 Mean 13188542.391 5597955.159 10329731.388 5405400.050 20625602.933 6242424.518 4699512.097 8385250.909 6594263.573 3872567.263
Crops CV 0.157 0.115 0.143 0.169 0.142 0.114 0.084 0.179 0.085 0.134

1982/93 Mean 17643771.954 6701908.463 12996711.723 5879907.506 22994725.677 7229992.378 5461209.103 10186991.736 6992866.349 4664010.212
CV 0.084 0.061 0.138 0.089 0.170 0.056 0.048 0.134 0.120 0.131

1993/04 Mean 23286483.981 7886660.357 16120799.908 6506193.595 27046336.520 8590499.524 5693994.670 12044270.033 7794004.214 5409819.779
CV 0.068 0.049 0.120 0.090 0.091 0.046 0.041 0.108 0.054 0.110

1960/71 Mean 5327584.310 4919007.684 7454614.625 5173132.409 17052320.948 4112320.193 6257852.014 9324537.634 4515637.364 2939895.358
CV 0.057 0.129 0.098 0.101 0.026 0.158 0.014 0.030 0.063 0.165

1971/82 Mean 6152491.657 6380074.865 9212170.296 7281860.962 15516508.437 5433833.885 6445471.439 9292008.630 5271046.811 3749067.268
Livestock CV 0.044 0.034 0.043 0.031 0.047 0.054 0.073 0.053 0.069 0.028

1982/93 Mean 7493949.676 6568411.982 10365093.348 7989950.726 14086364.477 6324043.452 7531591.704 10371877.289 6873033.353 4410247.573
CV 0.082 0.043 0.050 0.063 0.025 0.071 0.025 0.021 0.077 0.122

1993/04 Mean 9685007.165 8609192.715 11405247.563 9848376.630 14512438.991 8009618.671 8382637.716 10506374.382 9332273.382 6095279.863
CV 0.076 0.098 0.036 0.041 0.034 0.060 0.028 0.033 0.052 0.048

1960/71 Mean 1505214.023 754115.275 763723.724 1373528.695 973630.348 1109452.294 542393.806 574042.980 631465.964 510886.261
CV 0.072 0.074 0.111 0.261 0.085 0.066 0.202 0.186 0.154 0.123

1971/82 Mean 1287921.873 565772.514 619433.118 715874.669 779303.889 807393.456 366832.739 430656.260 433338.235 391387.399
Other CV 0.062 0.101 0.163 0.123 0.104 0.086 0.089 0.095 0.059 0.065

1982/93 Mean 1666910.125 968193.737 1430545.782 1362035.393 843864.319 869125.637 491187.178 646790.108 588487.411 619379.070
CV 0.121 0.141 0.136 0.175 0.171 0.193 0.091 0.126 0.295 0.408

1993/04 Mean 2550514.545 1351626.269 1934947.718 1728703.994 1218992.400 1394982.468 667759.874 904455.293 1049200.724 992821.059
CV 0.178 0.142 0.134 0.135 0.106 0.230 0.209 0.181 0.216 0.128

Table 3.1: Mean and coefficient of variation (CV) for quantities per subperiod in 1996 US dollars (×103).
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The USDA identifies 10 regions of agricultural production in the U.S. An overview
is provided in Table 3.2.

Region States

Pacific CA, OR, WA
Mountain AZ, CO, ID, MT, NM, NV, UT, WY
Northern Plains KS, ND, NE, SD
Southern Plains OK, TX
Corn Belt IA, IL, IN, MO, OH
Southeast AL, FL, GA, SC
Northeast CT, DE, MA, MD, ME, NH, NJ, NY, PA, RI, VT
Lake States MI, MN, WI
Appalachian KY, NC, TN, VA, WV
Delta States AR, LA, MS

Table 3.2: Regions of agricultural production.

We compute LHM TFP growth and its output-oriented decomposition for every
state over the selected time period. We compare across all 48 states when computing
the necessary distance functions and thus assume that all states have access to a similar
production technology. This is also the approach of Zof́ıo and Lovell (2001) and Ball
et al. (2010). Alternatively, we could compare states within the same agricultural region
(see Table 3.2). However, this would limit the set of observations to 2 or 3 for some
regions, which may be insufficient.14

We first conduct the analysis for a non-convex technology (using Free Disposal Hull
under a variable-returns-to-scale assumption) and then repeat the analysis for a convex
technology (using Data Envelopment Analysis under a variable-returns-to-scale assump-
tion). This shows the applicability of our decomposition for both technologies and high-
lights potential differences that can arise due to convexity assumptions of the production
technology.

3.4.2 Non-convex technology

In practice, Y t is unknown and needs to be estimated from the K observations in the
dataset. The smallest enveloping non-convex approximation under variable-returns-to-
scale (VRS) is given by:

Ŷ t =

{

(x0t, y0t)|
K∑

k=1

λkxkt ≤ x0t,
K∑

k=1

λkykt ≥ y0t,
K∑

k=1

λk = 1, λk ∈ {0, 1}
}

, (3.13)

and can be plugged in (3.1) to compute the directional distance function in practice. The
resulting program is a mixed-integer program and can be computationally harder to solve

14O’Donnell (2012b) applies window analysis to circumvent this problem, but uses rather large win-
dows for some regions. This can dampen the estimated rates of technical change.
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than the usual linear program. As first pointed out by Tulkens (1993), there exists an
equivalent formulation based on enumeration which is considerably easier to solve. The
enumeration formulation for directional distance functions with gt > 0 proposed by
Cherchye et al. (2001) is:

Db(x0a, y0a; ga) = max
k∈{1,...,K}







min
j∈{1,...,m},
v∈{1,...,n}

{

Y j
kb − Y j

0a

goj
a

,
Xv

0a − Xv
kb

giv
a

}






, (3.14)

with (a, b) ∈ {t, t + 1} × {t, t + 1}. This allows us to compute all distance functions
needed for the LHM TFP indicator and its decomposition. In line with the literature,
we choose gi

a = x0a and go
a = y0a such that β can be interpreted as the maximum

proportional expansion (contraction) in the output (input) direction.15 Since we work
with aggregate data, all of our chosen directional vectors are nonzero. Moreover, the data
set only contains nonnegative outputs yt ∈ R

m
+ . As a result, we can use the simplified

formula (3.14).16

Main findings for the U.S

We first present the results for the U.S. as a whole before presenting individual results for
the agricultural regions. We first consider the average LHM TFP change in Figure 3.4.
This is computed in a given year by taking the average LHM TFP of all states. This
figure shows several considerable LHM TFP changes over time. Until 1979 − 1980, bad
years offset good years resulting in only marginal cumulative LHM TFP growth over
this period. After this period, positive growth rates dominate negative growth rates
resulting in a positive cumulative LHM TFP growth of 78.61% in 2004. This boils down
to an average LHM TFP growth of 1.79% per year.

Figure 3.5 also shows the underlying drivers of these trends. Up to 1979 − 1980,
cumulative LHM TFP growth is driven by LIt,t+1. Subsequently, both input decline and
output growth contribute to substantial LHM TFP growth. Cumulative output growth
is 44.10%, while cumulative input decline is 34.51%. This means that U.S. agricultural
production simultaneously increases output production at an average rate of 1% per year
while decreasing input use at an average rate of 0.78% per year.

We now turn to our LHM TFP decomposition. Technical progress is the main driver
of LHM TFP growth which is partly offset by scale inefficiency growth. Over the entire
period, technical progress increased with 139.57% on average while cumulative scale
inefficiency change reached −60.63%. Technical inefficiency change plays virtually no
role. Table 3.3 summarizes these results and also lists the minimal and maximal values

15This choice of the direction vector takes into account state heterogeneity and projects each obser-
vation in a different direction onto the frontier. Recently, more advanced data-driven approaches were
developed that determine the direction vectors using the analyzed firm’s configuration (see Daraio and
Simar (2016) for technical details and Epure (2016) for a management-oriented discussion). Finally, a ho-
mogeneous direction vector is more desirable, for example, for regulators in sectors where heterogeneity
in input-output configurations is low.

16We use Bogetoft and Otto (2015)’s Benchmarking package in R to compute the distance functions.
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of the LHM TFP indicator and its components per subperiod of 11 years. It also lists
the corresponding states.
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Figure 3.4: Mean TFP change in the U.S. using a non-convex technology.

LHMt,t+1 LOt,t+1 LIt,t+1 ∆T o
t,t+1 ∆T EIo

t,t+1 ∆SECo
t,t+1

∑2004
t=1960 mean(states) 78.61 44.10 -34.51 139.57 -0.32 -60.63

Avg growth rate 1.79 1.00 -0.78 3.17 -7.30 ×10−3 -1.38

min

1960/71 -5.72 (OK) -4.70 (OK) -6.61 (RI) -8.77 (FL) -1.45 (OK) -30.20 (RI)
1971/82 -1.99 (WY) -1.18 (IN) -2.46 (SC) -13.81 (AZ) -0.57 (PA) -7.95 (DE)
1982/93 0.30 (FL) -2.02 (SD) -4.76 (NH) -1.22 (AR) -0.28 (MO) -14.44 (NH)
1993/04 -1.03 (VT) -0.60 (WY) -3.11 (MA) -3.38 (AL) -1.40 (OK) -10.13 (DE)

max

1960/71 3.29 (RI) 2.99 (NV) 2.02 (CO) 33.49 (RI) 0.00 (all but OK) 9.68 (FL)
1971/82 3.90 (OK) 4.12 (NE) 2.98 (ID) 7.64 (NH) 1.45 (OK) 14.60 (AZ)
1982/93 7.45 (UT) 4.13 (AR) 1.42 (OK) 17.79 (NH) 0.57 (PA) 6.81 (UT)
1993/04 5.34 (MA) 5.42 (SC) 1.99 (TN) 13.76 (DE) 0.28 (MO) 7.61 (AL)

Table 3.3: LHM TFP growth and its components in the U.S. over 1960 − 2004 (in %)
using a non-convex technology.

Main findings per region

Figure 3.6 depicts the average cumulative LHM TFP and its components for every
region over time. The mean is computed with respect to all states in that particular
agricultural production region. The highest cumulative TFP growth is achieved by
the Northeast, Southeast, Corn Belt and Delta States with 84.47% − 95.62%. They
are followed by the Pacific, Northern Plains, Appalachian, Lake States and Mountain
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Figure 3.5: Mean cumulative TFP growth in the U.S. and it components using a non-
convex technology.

regions with 63.56% − 74.36%. Finally, the Southern Plains region is severely behind
the other regions with a cumulative TFP growth of 35.95%.

Although almost all regions experience technical progress, there are diverging trends
among the different regions. Positive (negative) cumulative technical change over the
whole time period indicates progress (regress) in terms of production technology. The
Northeast experienced the largest cumulative technical progress (349%). The Pacific
region is second with 162.2% and the Lake States are third with 104.9%. The Mountain,
Corn Belt, Appalachian, Northern Plains, Delta States and Southeast experience milder
technical progress between 49.23% − 83.65%. The Southern Plains is the only region
with a cumulative technical regress of 11.42%, mainly due to a severe dip in the period
1975 − 1980 from which it only slowly recovers.

Technical inefficiency change generally plays a minor role. Positive (negative) cumu-
lative technical inefficiency change indicates that the distance to the frontier decreases
(increases) over the whole time period. Negative changes in cumulative technical ineffi-
ciency change are quickly followed by positive changes. These spikes are visible in the
Southern Plains, Northern Plains, Corn Belt, Delta States and Lake States. There is
only a negative cumulative technical inefficiency change in the Southern Plains, due to
a drop in technical inefficiency by 7.71% in 2004.

The trend in the scale inefficiency change is the mirror image of the trend in technical
change: regions with positive (negative) technical change experience negative (positive)
scale inefficiency. Positive (negative) cumulative scale inefficiency change indicates that
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the region operates at a more (less) optimal scale over the whole time period. The Sout-
hern Plains, Southeast, Delta States, Northern Plains, Corn Belt experience the highest
positive cumulative scale inefficiency change between 4.48% − 55.07%. Cumulative scale
inefficiency change is negative in the Appalachian, Mountain and Lake States (between
−1.00% and −36.05%). Cumulative scale inefficiency change is most negative in the
Pacific (−87.82%) and Northeast (−253.4%) regions.
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(a) Average cumulative TFP growth per re-
gion.
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(b) Average cumulative technical change per
region.
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(c) Average cumulative technical inefficiency
change per region.
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(d) Average cumulative scale inefficiency
change per region.

Figure 3.6: Cumulative TFP growth and its decomposition per U.S. region using a
non-convex technology.

3.4.3 Convex technology

Since we only have 48 observations per year, a non-convex technology might provide
limited discriminating power resulting in many efficient observations. Therefore, we
repeat the analysis for a convex VRS representation of the production technology using
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Data Envelopment Analysis (DEA). The smallest enveloping approximation is given by:

Ŷ t =

{

(x0t, y0t)|
K∑

k=1

λkxkt ≤ x0t,
K∑

k=1

λkykt ≥ y0t,
K∑

k=1

λk = 1, λk ≥ 0

}

, (3.15)

and can be plugged in (3.1) to compute the directional distance function in practice.
The resulting linear program with (a, b) ∈ {t, t + 1} × {t, t + 1} is:

Db(x0a, y0a; ga) = max
β,λk≥0

β s.t.
K∑

k=1

λkxkb ≤ x0a − βgi
a, (3.16)

K∑

k=1

λkykb ≥ y0a + βgo
a,

K∑

k=1

λk = 1.

This allows us to compute all necessary distance functions needed for all the components
of the LHM TFP indicator. As for the FDH analysis, we choose gi

a = x0a and go
a = y0a.

Main findings for the U.S

We present the results for the U.S. as a whole before presenting individual results for
the agricultural regions.17 We first consider the average annual LHM TFP change in
Figure 3.7. This is computed in a given year by taking the average LHM TFP of all
states. This figure shows considerable fluctuations in annual LHM TFP changes over
time. Overall, years with LHM TFP growth dominate years with LHM TFP decline.

Figure 3.8 shows the cumulative LHM TFP growth and the underlying drivers. Our
main finding for the U.S. as a whole is that LHM TFP clearly increases over time. The
LHM TFP indicator increases by 70.46% between 1960 and 2004. This boils down to
an average LHM TFP growth of 1.60% per year. LHM TFP growth is driven by output
growth (+62.98%) rather than input decline (−7.47%). In the period 1977−1982, LIt,t+1

contributes to a temporary slowdown in LHM TFP growth. LIt,t+1 only plays a minor
role in the remaining periods.

We now turn to our LHM decomposition. Our decomposition shows that technical
change (+70.55%) is the main driver, while technical inefficiency change (−1.99%) and
scale inefficiency change (+0.42%) only play a minor role. Table 3.4 summarizes these
results and lists the minimal and maximal values of the LHM TFP indicator and its
components per subperiod of 11 years. It also lists the corresponding states.

17Infeasibilities may arise for the components where the year of the observation differs from the year
of the reference technology. As there is no easy solution to solve this problem, Briec and Kerstens (2009)
recommend to report the infeasibilities. There were only infeasibilities in the computation of ∆T o

t,t+1

and ∆SECo
t,t+1 for Rhode Island.
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Figure 3.7: Mean TFP change in the U.S. using a convex technology.

1960 1965 1970 1975 1980 1985 1990 1995 2000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Year

T
F

P

USA

 

 

LHM
t,t+1

LO
t,t+1

LI
t,t+1

∆ T
t,t+1
o

∆ TEI
t,t+1
o

∆ SEC
t,t+1
o

Figure 3.8: Mean cumulative TFP growth and its components in the U.S. using a convex
technology.
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LHMt,t+1 LOt,t+1 LIt,t+1 ∆T o
t,t+1 ∆T EIo

t,t+1 ∆SECo
t,t+1

∑2004
t=1960 mean(states) 70.46 62.98 -7.47 70.55 -1.99 0.42

Avg growth rate 1.60 1.43 -0.17 1.60 -0.05 9.50 ×10−3

min

1960/71 -4.37 (OK) -3.84 (NJ) -6.61 (RI) -3.83 (OK) -1.60 (OK) -3.32 (NV)
1971/82 -1.28 (WV) -1.55 (MO) -1.84 (RI) -0.67 (FL) -2.92 (WY) -1.65 (DE)
1982/93 -0.36 (TN) -1.53 (NH) -3.52 (KS) 0.64 (FL) -2.64 (MO) -1.63 (SD)
1993/04 -2.41 (WY) -2.34 (WY) -2.70 (RI) -1.34 (KY) -3.65 (WY) -0.93 (LA)

max

1960/71 7.16 (ND) 7.21 (AR) 3.18 (AR) 5.42 (NV) 3.72 (ND) 1.76 (LA)
1971/82 3.77 (IL) 3.51 (WA) 2.63 (DE) 4.05 (ND) 1.59 (OK) 1.33 (OR)
1982/93 5.64 (DE) 4.83 (WV) 1.99 (OK) 5.67 (DE) 3.62 (MT) 2.03 (IA)
1993/04 4.24 (AL) 4.11 (SD) 2.53 (KY) 4.38 (MS) 2.89 (MO) 2.54 (TN)

Table 3.4: TFP growth and its components in the U.S. covering the years 1960 − 2004
(in %) using a convex technology.

Main findings per region

Figure 3.9 depicts the mean cumulative LHM TFP and its components for every region
over time. The mean is computed with respect to all states in that particular agricultural
production region. The Northern Plains experienced the highest cumulative LHM TFP
growth (119.3%) while the Southern Plains experienced the lowest cumulative LHM
TFP growth (8.96%) over the entire period. Between them, Delta States experience the
second highest cumulative LHM TFP growth of 107%. Pacific, Corn Belt, Southeast,
Northeast and Mountain regions have similar levels of cumulative LHM TFP growth of
65.58% − 86.18%. The cumulative LHM TFP growth of Lake States and Appalachian
regions varies in the range 35.36% − 46.83%.

Being the main driver of LHM TFP growth, similar trends occur for technical change.
The Northern Plains region has the highest rate of cumulative technical change (117.9%)
and the Southern Plains the lowest (6.25%). Again, Delta States experience the second
highest rate of technical change of 95%. The other regions can roughly be classified in
two clusters. The first cluster consists of the Corn Belt, Mountain, Southeast, Pacific
and Northeast regions (63.89% − 81.67%). The second cluster consists of Lake States
and Appalachian (43.6% − 52.09%).

In terms of cumulative technical inefficiency change, there are diverging trends among
the different regions. Pacific, Northern Plains, Delta States and Northeast experience
a positive cumulative technical inefficiency change between 4.86% and 10.82%. The six
remaining regions experience a negative cumulative technical inefficiency change. Cu-
mulative technical inefficiency change is mildly negative (between −7.01% and −1.58%)
in the Southeast, Corn Belt, Lake States and Mountain regions. This is worse in the
Southern Plains and Appalachian, where the cumulative technical inefficiency change is
−12.96% and −23.61%, respectively.

Again, there are diverging trends for cumulative scale inefficiency change. The
Southern Plains experience the highest increase in cumulative scale inefficiency change
(15.67%) followed closely by the Appalachian region (15.38%). The Northern Plains
experience a negative cumulative scale inefficiency change (−9.5%). Between these ex-
tremes, the Pacific, Corn Belt, Delta States, Southeast and Lake States have a positive
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cumulative scale inefficiency change in the range of 1.29% − 7.56%. In contrast, the
cumulative scale inefficiency change of the Northeast and Mountain regions is negative
(−6.64% and −7.88%, respectively).
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(a) Average cumulative TFP growth per re-
gion.
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(b) Average cumulative technical change per
region.
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(c) Average cumulative technical inefficiency
change per region.
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(d) Average cumulative scale inefficiency
change per region.

Figure 3.9: Cumulative TFP growth and its decomposition per U.S. region using a
convex technology.

Although all U.S. regions experienced LHM TFP growth in the period 1960 − 2004,
this analysis shows that the contribution of the underlying factors varies considerably
per region. Technical change is the main driver of LHM TFP growth for all U.S. regions.
In addition, several U.S. regions partly increased TFP by becoming more efficient over
time and/or operating at a more optimal scale. Other regions mainly relied on technical
change to increase LHM TFP.
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3.4.4 Discussion

The results depend on the convexity assumption of the technology. We test the hypot-
hesis whether the distributions of the LHM TFP indicator and its components for FDH
and DEA are not significantly different using a Kolmogorov-Smirnov test. This non-
parametrically tests the hypothesis H0 whether two samples are drawn from the same
underlying distribution. We conduct the test for every year separately, resulting in 44
different test hypotheses for every component. The results at the 10% significance level
are presented in Table 3.5. For the majority of years, the distributions of the LHMt,t+1

and its components LOt,t+1 and LIt,t+1 are not statistically different using FDH and
DEA. In contrast, the distributions of ∆T o

t,t+1 are statistically significant for a majority
of years and the distributions of ∆T EIo

t,t+1 and ∆SECo
t,t+1 under both technologies

are significantly different for all years. These results in conjunction with Table 3.3 and
Table 3.4 lead us to the following qualitative conclusions.

LHMt,t+1 LOt,t+1 LIt,t+1 ∆T o
t,t+1 ∆T EIo

t,t+1 ∆SECo
t,t+1

Reject H0 per year at 10% 9/44 12/44 8/44 25/44 44/44 44/44
Reject H0 at 10% No Yes Yes Yes Yes Yes

Table 3.5: Results of Kolmogorov-Smirnov test for distributions under non-convex and
convex technologies.

Both results suggest there is substantial LHM TFP growth over the entire period
which is mainly driven by technical progress. Both the DEA and FDH results indicate
that output growth dominates input decline, although this finding is much more pro-
nounced for the DEA results. A possible explanation for the smaller contribution of
input decline is that some quasi-fixed inputs (e.g., land) are not constantly adjusted
over time or that input reduction is not an objective for some inputs such as land and
labor.

We analyze LHM TFP growth and technical change across time, farm types and
agricultural intensity rates. Table 3.6 shows the results of the Kolmogorov-Smirnov test
testing equality of distributions for LHM TFP growth rates and technical changes for
consecutive subperiods of eleven years in line with Table 3.3. Regarding FDH, all dis-
tributions of consecutive LHM TFP growth rates and technical changes are significantly
different at the 10% level. Regarding DEA, the distributions of the LHM TFP growth
rates and technical changes between 1982/93 and 1993/04 are not significantly different
at the 10% level, while these are significantly different comparing the preceding time
periods. This suggests that distributional differences in productivity growth driven by
shifts in technology may decrease in importance throughout time.

In line with Ang and Kerstens (2016), we assess whether there are distributional
differences in LHM TFP growth rates and technical changes between farm types in Ta-
ble 3.7. We rank the farm regions by the ratio of crop production to total production
considering the whole time period. This leads to a classification of 3 crop regions (Corn
Belt, Northern Plains and Pacific), 4 mixed regions (Delta States, Southeast, Appala-
chian, and Northeast) and 3 livestock regions (Lake States, Mountain area and Southern
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1960/71 − 1971/82 1971/82 − 1982/93 1982/93 − 1993/04

FDH: Reject H0 at 10% LHMt,t+1 Yes Yes Yes
FDH: Reject H0 at 10% ∆Tt,t+1 Yes Yes Yes

DEA: Reject H0 at 10% LHMt,t+1 Yes Yes No
DEA: Reject H0 at 10% ∆Tt,t+1 Yes Yes No

Table 3.6: Results of Kolmogorov-Smirnov test for distributions of LHM TFP growth
rates and technical changes for consecutive time periods.

Plains). Regarding the FDH results, the distributions of the LHM TFP growth rates
of mixed regions and livestock regions are significantly different at the 10% level, while
these are not significantly different at the 10% level comparing crop regions to mixed
regions and livestock regions. Interestingly, regarding the FDH results, the distributions
of the technical changes are significantly different at the 10% level comparing all types
of regions. Regarding the DEA results, the distributions of the LHM TFP growth rates
and technical changes of crop regions and mixed regions, and mixed regions and lives-
tock regions, are not significant at the 10% level, while these are significantly different
at the 10% level comparing crop regions to livestock regions. In summary, there seems
to be ambiguity in how regional differences in specialization may drive differences in the
distribution of LHM TFP growth and technical changes.

Crops - Mixed Mixed - Livestock Crops - Livestock

FDH: Reject H0 at 10% LHMt,t+1 No Yes No
FDH: Reject H0 at 10% ∆Tt,t+1 Yes Yes Yes

DEA: Reject H0 at 10% LHMt,t+1 No No Yes
DEA: Reject H0 at 10% ∆Tt,t+1 No No Yes

Table 3.7: Results of Kolmogorov-Smirnov test for distributions of LHM TFP growth
rates and technical changes covering the whole time period among farm types.

We also assess whether there are distributional differences in LHM TFP growth
rates and technical changes between agricultural intensity rates in Table 3.8. We rank
the farm regions by the Industry Specialization Index (ISI) for agriculture considering
1963 − 2004.18 The U.S. Bureau of Economic Analysis (BEA) computes the ISI as
the agricultural industry’s share of the state-level Gross Domestic Product divided by
the agricultural industry’s share of the U.S. total for the same statistic. The complete
dataset can be found in BEA (2016). We rank the regions by ISI, which leads to a
classification of 3 low ISI regions (Northeast, Lake States and Southeast), 4 medium ISI
regions (Appalachian, Southern Plains, Pacific and Corn Belt) and 3 high ISI regions
(Mountain area, Delta States and Northern Plains). With respect to the FDH results,
comparing distributions of the LHM TFP growth rates for all groups do not yield any
significant difference at the 10% level. The distributions of the technical changes are
significantly different at the 10% level comparing low ISI regions to medium and high

18Data for 1960 − 1962 are unavailable.
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ISI regions. Regarding the DEA results, the distributions of the LHM TFP growth rates
and technical changes are significantly different at the 10% level comparing medium ISI
regions to high ISI regions. Similar to the preceding section, there thus seems to be
ambiguity in how regional differences in agricultural intensity may drive differences in
the distribution of LHM TFP growth and technical changes.

Low - Medium Medium - High Low - High

FDH: Reject H0 at 10% LHMt,t+1 No No No
FDH: Reject H0 at 10% ∆Tt,t+1 Yes No Yes

DEA: Reject H0 at 10% LHMt,t+1 No Yes No
DEA: Reject H0 at 10% ∆Tt,t+1 No Yes No

Table 3.8: Results of Kolmogorov-Smirnov test for distributions of LHM TFP growth
rates and technical changes covering the whole time period among agricultural intensity
rates.

The contribution of technical inefficiency change to LHM TFP growth is less clear-cut.
Using FDH, technical inefficiency change is virtually nonexistent. Further inspection
reveals that most (contemporaneous) technical inefficiency scores are zero using FDH.
This drives the extremely low technical inefficiency change. Therefore, these remarkable
results may be due to lower discriminatory power of FDH in this case since there are
relatively few observations per year compared to the number of inputs and outputs.
Using DEA, there is a small cumulative increase in technical inefficiency change.

The results differ more for the scale inefficiency change component. There is a
substantial increase in cumulative scale inefficiency change using FDH, whereas there is
almost no cumulative scale inefficiency change using DEA. Again, this may be due to
the higher discriminatory power of DEA.

Our DEA results are in line with other empirical studies that analyze the TFP
growth in the U.S. agricultural sector using the same data source. Zof́ıo and Lovell
(2001), Ball et al. (2010), O’Donnell (2012b) and Ball et al. (2016) also find substantial
TFP growth.19 It is driven by technical progress rather than efficiency change in line
with Zof́ıo and Lovell (2001) and Ball et al. (2016). Following Ball et al. (2016), TFP
growth is also due to output growth rather than changes in the input level.

3.5 Conclusions

This paper decomposes the additively complete LHM TFP indicator into components of
technical change, technical inefficiency change and scale inefficiency change. Our appro-
ach is general in that it does not require differentiability or convexity of the production
technology. Using a nonparametric framework, the empirical application focuses on
state-level data of the U.S. agricultural sector over the period 1960 − 2004. We compute

19Zof́ıo and Lovell (2001) only analyze TFP growth over the period 1960 − 1990.
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the scores using FDH and DEA to show the flexibility of our decomposition and to inves-
tigate the potential issue of non-convexities in the agricultural sector. Furthermore, we
analyze LHM TFP growth and technical change across time, farm types and agricultural
intensity rates.

The FDH results show that LHM TFP has increased by 78.61% in the considered
period. This is due to output growth (+44.10%) as well as input decline (−34.51%).
Technical change (+130.57%) and scale inefficiency change (−60.63%) are the main
drivers, while technical inefficiency change (−0.32%) only plays a minor role.

Following the DEA results, LHM TFP has increased by 70.46% for the considered
period. This productivity growth is due to output growth (+62.98%) rather than changes
in the input level (−7.47%). Technical change is the main driver (+70.55%), while
technical inefficiency change (−1.99%) and scale inefficiency change (+0.42%) only play
a minor role.

The results thus depend on whether we use FDH or DEA. Although this may partly
be driven by the underlying true production technology, we note that FDH may result
in too low discriminatory power to compute the distance functions given the relatively
low number of observations for the number of variables in this application.

Following the Kolmogorov-Smirnov tests, there seem to be differences in the distribu-
tions of LHM TFP growth and technical change across time, farm types and agricultural
intensity rates. We suspect that policy instruments and factor endowments (e.g., soil
and weather conditions) may drive differences across time, farm types and agricultural
intensity rates, potentially resulting in differing distributions in LHM TFP growth and
technical change. For instance, agricultural support payments with restrictions on land
use (Just and Kropp, 2013) and ethanol subsidies (Motamed et al., 2016) likely have
an impact on geographical specialization. This information would be relevant for policy
makers. Such an empirical investigation is left for future research.

There are a number of limitations to our work. First, we did not account for pos-
sible intertemporal linkages in the modeling of technology in the empirical application.
Capital and land are prime examples of “durable” inputs (see Chapter 4) which link
production in subsequent periods. Accounting for this in modeling of the technology
likely affects the TFP results and its decomposition. Second, the residual approach in
defining the scale inefficiency change component differs from the conventional CRS-VRS
approach. The accuracy of this residual approach depends on the “step-size”, while the
CRS-VRS approach uses a (hypothetical) CRS benchmark susceptible to a few (extreme)
observations. The first question pertains to the definition of the scale inefficiency change
component: can one use the CRS-VRS approach instead of the residual approach and,
if so, what is the interpretation of the remaining component? Next, it is of practical
interest to determine the conditions under which one should prefer one approach over
the other via simulations and empirical applications.
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3.A Managi’s (2010) decomposition

Managi (2010) decomposes the Luenberger-Hicks-Moorsteen indicator into technical
change (TC):

T C =
[

Dt+1(xt+1, yt+1; (gi
t+1, 0)) − Dt(xt+1, yt+1; (gi

t+1, 0))
]

− [
Dt+1(xt+1, yt+1; (0, go

t+1)) − Dt(xt+1, yt+1; (0, go
t+1))

]
,

and the residual being efficiency change (EC):

EC =
1

2

{

Dt(xt, yt; (0, go
t )) − Dt(xt, yt+1; (0, go

t+1))

− Dt(xt+1, yt; (gi
t+1, 0)) + Dt(xt, yt; (gi

t, 0))

+ Dt+1(xt+1, yt; (0, go
t )) + Dt+1(xt+1, yt+1; (0, go

t+1))

− Dt+1(xt+1, yt+1; (gi
t+1, 0)) + Dt+1(xt, yt+1; (gi

t, 0))
}

− Dt(xt+1, yt+1; (0, go
t+1)) − Dt+1(xt+1, yt+1; (gi

t+1, 0)) + Dt(xt+1, yt+1; (gi
t+1, 0))

However, this decomposition is incomplete. First, it lacks a scale (in)efficiency change
component. Second, there is no reason for TC to be defined as a difference between
an output-oriented technical change component and an input-oriented technical change
component. Furthermore, TC is only defined with respect to observations in period t+1,
although there is no clear reason to favor those to observations in period t. Finally, the
EC component does not capture technical (in)efficiency change.

3.B Decomposition using the input direction

The decomposition using the input direction is:

LHMt,t+1 = ∆T i + ∆T EIi + ∆SECi, (3.17)

representing technical change, technical inefficiency change and scale inefficiency change,
respectively.

The technical change component is defined as:

∆T i =
1

2

{[

Dt+1(xt, yt; (gi
t, 0)) − Dt(xt, yt; (gi

t, 0))
]

+
[

Dt+1(xt+1, yt+1; (gi
t+1, 0)) − Dt(xt+1, yt+1; (gi

t+1, 0))
]}

, (3.18)

and the same interpretation as before. Technical inefficiency change is:

∆T EIi = Dt(xt, yt; (gi
t, 0)) − Dt+1(xt+1, yt+1; (gi

t+1, 0)). (3.19)
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From the residual

LHMt,t+1−∆T i − ∆T EIi = (3.20)

1

2

{[
Dt(xt, yt; (0, go

t )) − Dt(xt, yt+1; (0, go
t+1))

]

+
[
Dt+1(xt+1, yt; (0, go

t )) − Dt+1(xt+1, yt+1; (0, go
t+1))

]}

−1

2

{[

Dt(xt+1, yt; (gi
t+1, 0)) − Dt(xt+1, yt+1; (gi

t+1, 0))
]

+
[

Dt+1(xt, yt; (gi
t, 0)) − Dt+1(xt, yt+1; (gi

t, 0))
]}

,

we recover the scale inefficiency change component in a similar way as before. Define
the projections of xt and xt+1 on the production frontier at time t:

x∗
t = xt − Dt(xt, yt; (gi

t, 0))gi
t (3.21a)

x∗∗
t+1 = xt+1 − Dt(xt+1, yt+1; (gi

t+1, 0))gi
t+1, (3.21b)

and the projections of xt and xt+1 on the production frontier at time t + 1:

x∗∗
t = xt − Dt+1(xt, yt; (gi

t, 0))gi
t (3.22a)

x∗
t+1 = xt+1 − Dt+1(xt+1, yt+1; (gi

t+1, 0))gi
t+1. (3.22b)

Respectively adding and subtracting Dt(xt, yt; (gi
t, 0)) and Dt+1(xt+1, yt+1; (gi

t+1, 0)) to
and from (3.20), and using the translation property of the directional distance function
and the definitions of the projections above, we find the scale inefficiency change com-
ponent:

∆SECi =
1

2

{[

Dt(xt, yt; (0, go
t )) − Dt(xt, yt+1; (0, go

t+1))
]

(3.23)

−
[

Dt(x
∗∗
t+1, yt; (gi

t+1, 0)) − Dt(x
∗
t , yt; (gi

t, 0))
]

+
[
Dt+1(xt+1, yt; (0, go

t )) − Dt+1(xt+1, yt+1; (0, go
t+1))

]

−
[

Dt+1(x∗
t+1, yt+1; (gi

t+1, 0)) − Dt+1(x∗∗
t , yt+1; (gi

t, 0))
]}

≡ 1

2

{

∆SECi
t + ∆SECi

t+1

}

.

3.C State-level TFP figures

This appendix includes the LHM TFP indicator and its components per agricultural
region. Each figure is constructed by averaging over all states in that particular agricul-
tural region in every year.

3.C.1 Convex technology
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(c) Northern Plains.
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(d) Southern Plains.
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(e) Corn Belt.
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(f) Southeast.

Figure 3.10: Cumulative LHM TFP indicator and its components per agricultural region under a convex technology.
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(g) Northeast.
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(h) Lake States.
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(i) Appalachian.
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(j) Delta States.

Figure 3.10: Cumulative LHM TFP indicator and its components per agricultural region
under a convex technology.

3.C.2 Non-convex technology
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(b) Mountain.
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(c) Northern Plains.
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(d) Southern Plains.
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(e) Corn Belt.

1960 1965 1970 1975 1980 1985 1990 1995 2000
−0.5

0

0.5

1

Year

T
F

P

Southeast

 

 

LHM
t,t+1

LO
t,t+1

LI
t,t+1

∆ T
t,t+1
o

∆ TEI
t,t+1
o

∆ SEC
t,t+1
o

(f) Southeast.

Figure 3.11: Cumulative LHM TFP indicator and its components per agricultural region under a non-convex technology.
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(j) Delta States.

Figure 3.11: Cumulative LHM TFP indicator and its components per agricultural region
under a non-convex technology.





Chapter 4

Production with storable and

durable inputs: nonparametric

analysis of intertemporal efficiency
“Imagine that you visit a shipyard. Day by day a tremendous amount of
production activity of great variety is carried on, yet no ships are turned out.
[...] The shipbuilding production system, like construction, is a dynamically
evolving process.”

— Ronald W. Shephard1

4.1 Introduction

Many production decisions have long term consequences for production and are capital-
intensive: should a firm merely buy new machines to replace older machines that have
reached (physical) end of life? Or should the firm invest in new machines to expand
its production capacity? These capital-intensive investments are “durable” by nature,
because they have a long term impact on production. Furthermore, firms often buy far
larger quantities of inputs then they currently need. This can be economically rational for
a number of reasons: there are discounts on bulk purchases of inputs or firms expect input
prices to rise in the near future. These “storable” inputs can be stored in inventories and
are used over several time periods. These durable and storable inputs used in production
limit the flexibility of a firm in adjusting its input mix. In this paper, we introduce a
novel methodology for economic (cost) efficiency analysis that explicitly takes these
intertemporal aspects of firms’ production behavior into account. This obtains a more
realistic modeling of intertemporal relations in production situations where storability
and durability of inputs are relevant, which is often the case in real-life settings.

0This chapter is based on joint work with Laurens Cherchye (KU Leuven) and Bram De Rock (ULB
& KU Leuven).

1Preface to Shephard and Färe (1980, p.V)
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4.1.1 Intertemporal efficiency and regulation

In regulated industries it is particularly vital that the regulator takes intertemporal
dependencies of production into account in the regulation exercise. However, regula-
tors generally do not incorporate these interdependencies in practice. This is someti-
mes motivated by a lack of panel data, which forces regulators to limit the analysis to
cross-sectional data (Pollitt, 2005). However, also the used definition of capital costs
(Shuttleworth, 2005) and capitalization policies across firms, countries or industries (Ha-
ney and Pollitt, 2013) can be contested.2 Clearly, not taking these dependencies into
account can lead to erroneous cost reduction targets. Shuttleworth (2005) reports a case
where Ofgem, a UK electricity distribution regulator, imposed a too strong target for one
distributor (Seeboard) while imposing a too loose target on another (Southern). This
discrepancy was due to the fact that Ofgem only considered operational expenses, while
disregarding capital expenses. And it happened that Southern was characterized by high
capital expenses and low operational expenses, while the opposite applied to Seeboard.
Balk et al. (2010) also discuss the importance of correctly considering capital expenses
in the regulation analysis and note that there is no consensus on how to properly deal
with capital expenses in the studies they considered.

The relation between regulatory regime and investment has received a lot of atten-
tion (see Guthrie (2006) for a discussion). Focusing on cross-sectional data can lead
to penalization of firms that invest while rewarding those that delay investments. Nick
and Wetzel (2015) conclude that firms have an incentive to cut investments when the
regulator uses a static benchmarking model. Our empirical application to Swiss railway
companies will show that the resulting dynamic efficiency conclusions may significantly
differ from the ones that are based on a static efficiency analysis. In our opinion, this
directly motivates the practical relevance of our methodology, as these differences may
substantially affect the regulatory policies that are based on the efficiency assessment.

4.1.2 Efficiency analysis with durable and storable inputs

The existing literature has devoted much attention to the analysis of dynamically efficient
production behavior from a technical perspective (see Fallah-Fini et al. (2013) for a recent
review). Such technical efficiency analysis then focuses, for example, on the modeling
of production delays, inventories, capital (quasi-fixed factors in general), adjustment
costs and learning. By contrast, far less work has tackled the issue from an economic
perspective.3 Importantly, however, the distinction between economic and technical
efficiency analysis becomes particularly relevant in dynamic decision settings.

For durable inputs, it has long been known that firms do not scrap old (durable)
capital equipment the moment new equipment becomes available. The process of repla-
cing capital equipment is rather gradual. Firms deciding on new capital equipment face

2There does exist general guidelines on capital measurement. We refer to the manual on capital
measurement of the OECD (2009) for an example.

3Notable exceptions include Nemoto and Goto (1999, 2003); Ouellette and Yan (2008); Silva and
Stefanou (2003). We discuss the relation between our framework and this existing work in Section 4.2.
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different substitution possibilities between inputs before (ex ante) and after (ex post)
the purchase: once capital equipment is installed, it remains in use until the end of its
predetermined lifetime (Forsund and Hjalmarsson, 1974; Johansen, 1959). Thus, while
firms might seem inefficient from a technical perspective, they may actually be efficient
from an economic perspective.4

Similarly, when deciding upon storable inputs, firms typically plan their production
in advance for a certain time horizon. They form expectations on prices and demand and
then decide on the amount of necessary inputs to acquire. Clearly, if prices of storable
inputs vary over time, this can again generate significant discrepancies between technical
and economic efficiency analysis.

In this paper, we present a unifying framework to analyze intertemporal cost minimi-
zing behavior with both durable and storable inputs. For durable inputs, our framework
explicitly models the possibility that firms use several vintages: they invest in new dura-
bles and scrap older durables over time. Furthermore, we allow for production delays of
durable inputs. We also show how our framework can incorporate alternative hypotheses
such as degressive write-off of durables over time.

A main distinguishing feature of our methodology is that it is intrinsically nonpara-
metric (in the spirit of Afriat (1972), Varian (1984) and Banker and Maindiratta (1988)):
it can analyze production behavior without imposing any (usually non-verifiable) functi-
onal structure on the production technology. We characterize production behavior that
is intertemporal cost efficient, which allows us to evaluate the efficiency of observed pro-
duction decisions. For cost inefficient behavior, we propose a measure that quantifies
the degree of inefficiency. This intertemporal inefficiency measure has the attractive
property that it can be decomposed in period-specific cost inefficiencies.

4.1.3 Outline

The remainder of this paper unfolds as follows. In Section 4.2, we discuss the connection
between our work and the closely related literature on both intertemporal production
models and efficiency analysis. Sections 4.3 to 4.5 formally introduce our methodology.
After introducing our general set-up in Section 4.3, we first consider the case where one
has full information on allocations of storables and write-offs of durables in Section 4.4,
to subsequently present the case where limited or no such information is known in
Section 4.5. Section 4.6 presents some extensions to the basic framework. Section 4.7
contains the empirical application of our methodology to Swiss regional railway com-
panies. Specifically, this analysis will demonstrate the relevance of accounting for the
intertemporal (durable) nature of capital expenses in a regulated production environ-
ment. Finally, Section 4.8 concludes and points out a number of interesting extensions.

4Wibe (2008) coined the term “rational inefficiency” to mark this difference.
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4.2 Related literature

Our framework for intertemporal production analysis bears close connections with a
number of existing studies on the analysis of efficient production behavior. Most of this
earlier work appeared under the label Data Envelopment Analysis (DEA), which is often
used to refer to the nonparametric analysis of production efficiency. In what follows, we
discuss the relation with earlier literature on network DEA, efficiency analysis with quasi-
fixed inputs, and DEA with lagged input effects. In turn, this will allow us to articulate
the specificities of our own contribution.

First, our work is closely related to the literature on network DEA (Färe and Gros-
skopf, 2000) and dynamic DEA (Färe and Grosskopf, 1996). In an early contribution
to this literature, Färe (1986) showed how to measure output efficiency by allowing for
inputs that are allocatable over time, which are similar in nature to what we call stora-
ble inputs. He makes a distinction between inputs for which the allocation over time is
known and inputs for which (only) the total amount is known but not how this amount
is allocated over time. Importantly, however, he does not consider the intermediate case
with new inputs in every period that are to be allocated over multiple time periods. In
a similar fashion, Färe et al. (1997) model fixed but allocatable inputs over outputs and
develop an output efficiency measure that locates potential efficiency gains due to the re-
allocation of inputs over the outputs. Färe et al. (2010) consider the problem of resource
allocation over time distinguishing between the decision of when to start allocation and
over how many periods to allocate the resources. They also consider this problem under
specific returns-to-scale assumptions, capacity constraints and technical change. Again,
he does not consider the problem of allocating new inputs after the start period. In
the current setting we consider the time frame fixed, but allow for new inputs in every
time period that need to be allocated in subsequent time periods. Finally, inventories
are also explicitly modeled in Hackman and Leachman (1989)’s general framework of
production.

Similarly to our use of durable inputs, Färe et al. (2007) construct a network DEA
model with durable and instantaneous inputs to model technology adoption, where one
of the technologies is vintage. Durable inputs are vintage-specific, and the adoption of a
new technology is accomplished by diverting instantaneous inputs away from the vintage
technology to the new technology. Kao (2013) models a dynamic DEA model where the
intertemporal dependence among production processes is modeled by quasi-fixed inputs
or intermediate products. The overall system efficiency measure can be decomposed as a
weighted sum of per-period efficiency measures. These per-period efficiency measures are
not necessarily unique and hence not comparable among different DMUs. In a two-stage
DEA model Kao and Hwang (2008) maximize the efficiency of stage 1 while maintaining
the overall system efficiency. In this way stage 1 efficiency is maximal for all DMUs and
can be compared among DMUs.

All these network DEA models have in common that they measure technical efficiency
(without price information) and not economic efficiency (with price information). Such
technical efficiency analysis requires specific assumptions regarding the nature of the
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production technology.5,6

Furthermore, our concept of durable inputs is also related to the notion of quasi-fixed
inputs. Nemoto and Goto (1999, 2003) model adjustment costs due to quasi-fixed inputs
and develop an efficiency measure. They treat quasi-fixed inputs as intermediate outputs
which are used as inputs in subsequent periods. Their model was extended by Ouellette
and Yan (2008) by weakening the restrictions on capital investment. Similarly, Silva and
Stefanou (2003) develop nonparametric tests for investment in quasi-fixed inputs with
internal adjustment costs in the spirit of Varian (1984).

Next, Chen and van Dalen (2010) incorporate lagged effects of inputs on outputs
in DEA efficiency measurement. The relation between output and delayed inputs is
fixed parametrically. Thus, they assume that these productive effects are known a priori
and estimate these by a fixed effect panel vector autoregressive model in their empirical
application. This makes their efficiency measure highly dependent on their parametric
specification of the productive effects.

Basically, our contribution is that we present a unifying framework to nonparametri-
cally analyze economic (cost) efficiency in intertemporal production with both storable
and durable inputs. We explicitly model the fact that these two types of inputs are
used over several time periods: storable inputs are allocated over multiple periods, and
durable “vintage” inputs are not immediately replaced by newer durable inputs (thus fol-
lowing Johansen (1959) and Forsund and Hjalmarsson (1974)). In addition, we also allow
for production delays of durable inputs over time. Next, we propose a cost inefficiency
measure that can be decomposed in per-period inefficiencies.7 Finally, as compared to
the literature on quasi-fixed inputs, we do not focus on the issue of adjustment costs, but
rather consider the replacement of vintages of durables over time from a cost perspective
(see also the introduction of Section 4.3).

4.3 Set-up

We assume a balanced panel setting with K firms that are observed T times. For
each firm k and time period t, we observe the S-dimensional output yk,t ∈ R

S
+, the

N -dimensional storable input qk,t ∈ R
N
+ , the M -dimensional durable input Qk,t ∈ R

M
+

and the corresponding discounted input prices pk,t ∈ R
N
++ and Pk,t ∈ R

M
++ respectively.

For every k = 1, . . . , K, this defines the dataset

Sk =
{

(pk,t, qk,t, Pk,t, Qk,t, yk,t)|t = 1, . . . , T
}

.

5In our concluding Section 4.8 we will indicate the possibility to conduct a technical efficiency ana-
lysis in the intertemporal framework (for economic efficiency analysis) that we develop in the following
sections. These technical efficiency formulations could subsequently establish a formal link with the
existing network DEA models.

6See the early contribution of Shephard and Färe (1980) for a formal treatment in terms of set
representation and distance functions.

7We note that Kao (2013) proposed a similar decomposition of efficiency scores in per-period effi-
ciencies for a DEA model with quasi-fixed inputs.
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To keep our exposition simple, we assume that firms have perfect foresight, i.e., they
exactly anticipate the future prices. In fact, it is fairly easy to extend our method to
account for predicted prices that deviate from the prices that are realized ex post.8 But
this would only complicate our reasoning without really adding new insights. Also, the
fact that we evaluate a firm’s cost efficiency in terms of realized prices makes that we
may interpret measured inefficiencies as (ex post) prediction errors.

Storable inputs are divisible and we assume they are used over J periods: a fraction
is used in each period, while the remaining part is stored for the next periods. Storable
inputs can only be used once and are nondurable. Durable inputs are indivisible and
usable in multiple periods before reaching end of life status. This is where they differ from
storable inputs. Durable inputs are related to quasi-fixed inputs in that they have an
effect over multiple periods, but differ from quasi-fixed inputs because they may also be
adjusted instantaneously (e.g., one can stop using a laptop or company car immediately).
In that sense, we can see quasi-fixed inputs as a subset of durable inputs. In general,
durable inputs are seen as investments: a firm intends to use the durable input for a
number of periods and writes off the cost of investment over these periods. Examples of
durable inputs include machines, equipment, company cars, etc. To keep the exposition
simple, we also assume they are used over J periods. We show in Section 4.6 how this
assumption can be relaxed.

Our behavioral hypothesis is that firms are intertemporally cost minimizing. To
formalize this assumption, we represent firm technologies in terms of input requirement
sets It(yk,t) for the output of firm k produced at time period t. These sets are defined
in the usual way, i.e.,

It(yk,t) =
{

(q, Q) ∈ R
N+M
+ |(q, Q) can produce yk,t

}

.

Next, we make use of quantity allocations (q1
t , . . . ,qJ

t )T
t=1 of storable inputs and price

write-offs (P1
t , . . . ,PJ

t )T
t=1 of durable inputs. These allocations and write-offs will be

used to distribute firm k’s input costs over the J relevant time periods, and are subject
to the adding-up restrictions qk,t =

∑J
j=1 q

j
k,t and Pk,t =

∑J
j=1 P

j
k,t.

9 Then, we say that
firm k minimizes its total production costs over the time horizon [J, . . . , T ] if it chooses
the allocation (q1

t , . . . ,qJ
t )T

t=1 and write-off (P1
t , . . . ,PJ

t )T
t=1 that solves

min
(q1

t ,...,qJ
t )T

t=1

(P1
t ,...,PJ

t )T
t=1

T∑

t=J

t∑

j=t−J+1

(

pk,jq
t−j+1
j + P

t−j+1
j Qk,j

)

(4.1a)

s.t.





J∑

j=1

q
j
t−j+1,

J∑

j=1

Qk,t−j+1



 ∈ It(yk,t) ∀t = J, . . . , T, (4.1b)

8For example, a simple solution consists of verifying the cost efficiency conditions that we define
below for alternative specifications of (anticipated) prices, as a robustness analysis.

9In Appendix 4.A, we explain the economic intuition of the write-offs (P1
t , . . . ,PJ

t )T
t=1 as representing

(in monetary terms) marginal productivities of the durable inputs.
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where the last feasibility constraint states that the allocation of storables and durables
effectively admits the production of the output yk,t for the given technology. The fact
that the storable and durable input quantities are summed over J present and past
periods reveals the intertemporal dependency of firm k’s production decisions.

Table 4.1 sharpens the intuition of the above concepts through a simple example
that shows a firm’s observed costs and production costs over time for J = 2. The
table illustrates two crucial points. First, observed costs and production costs generally
differ. Thus, any efficiency comparison using observed costs instead of production costs
is potentially overly pessimistic. Second, the lack of information on allocations and
write-offs beyond the observed time frame limits any test of (4.1) to the time period
[2, . . . , T ] when J = 2 and [J, . . . , T ] in general. This explains why we only consider the
period [J, . . . , T ] in (4.1) instead of [1, . . . , T ] in our minimization program.

t observed cost production cost

storable inputs durable inputs

1 p1q1 p1q
1
1 + ? P1

1Q1 + ?
2 p2q2 p2q

1
2 + p1q

2
1 P1

2Q2 + P2
1Q1

3 p3q3 p3q
1
3 + p2q

2
2 P1

3Q3 + P2
2Q2

4 p4q4 p4q
1
4 + p3q

2
3 P1

4Q4 + P2
3Q3

...
...

...
...

t ptqt ptq
1
t + pt−1q

2
t−1 P1

t Qt + P2
t−1Qt−1

...
...

...
...

T − 1 pT −1qT −1 pT −1q
1
T −1 + pT −2q

2
T −2 P1

T −1QT −1 + P2
T −2QT −2

T pT qT pTq
1
T + pT −1q

2
T −1 P1

T QT + P2
T −1QT −1

T + 1 ? ? + pTq
2
T ? + P2

T QT

Table 4.1: Overview of production costs with storable and durable inputs for J = 2.

4.4 Complete information

We next turn to deriving operational conditions for cost minimizing behavior as defined in
(4.1). As indicated in the Introduction, we derive nonparametric conditions in the spirit
of Afriat (1972); Banker and Maindiratta (1988); Varian (1984), which make minimal
assumptions regarding the production technology. To set the stage, we first consider
the limiting case that is characterized by full information on the quantity allocations of
the storable inputs and the price write-offs of the durable inputs, that is, for each firm
k the empirical analyst observes the allocations (q1

k,t,q
2
k,t, . . . ,qJ

k,t) and the write-offs

(P1
k,t,P

2
k,t, . . . ,PJ

k,t) at every time period t = 1, ..., T .

Such complete information greatly simplifies matters. From (4.1), it is easy to verify
that, for a given specification of storable allocations and durable write-offs, the pro-
duction costs for any time period t are defined independently of the production costs for
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other time periods. As an implication, firm k behaves consistently with (4.1) if and only
if it solves, for every t = J, ..., T ,

min
(q1

j
,...,qJ

j
)t
j=t−J+1

(P1
j ,...,PJ

j )t
j=t−J+1

t∑

j=t−J+1

(

pk,jq
t−j+1
j + P

t−j+1
j Qk,j

)

(4.2a)

s.t.





J∑

j=1

q
j
t−j+1,

J∑

j=1

Qk,t−j+1



 ∈ It(yk,t) (4.2b)

Putting it differently, dynamically cost minimizing behavior under complete informa-
tion can be represented as statically cost minimizing behavior for every period t. Varian
(1984) developed the nonparametric characterization of such static cost minimization.10

Thus, we can obtain our empirical condition for dynamic cost efficiency by translating
Varian’s reasoning to our particular setting.

Throughout, we will adopt the next two axioms regarding the production technology
(given by It(yk,t)):

Axiom 4.1 (observability means feasibility). For all t = 1, . . . , T and k = 1, . . . , K :

(pk,t,q
1
k,t, . . . ,qJ

k,t,P
1
k,t, . . . ,PJ

k,t, Qk,t, yk,t) ∈ Sk ⇒
(
∑J

j=1 q
j
k,t−j+1,

∑J
j=1 Qk,t−j+1

)

∈
It(yk,t).

Axiom 4.2 (nested input sets). For all t = 1, . . . , T and k, s = 1, . . . , K : ys,t ≥ yk,t ⇒
It(ys,t) ⊆ It(yk,t).

11

In words, Axiom 4.1 says that there are no significant measurement errors in the
data.12 Axiom 4.2 says that, for a given time period t, input requirement sets are
nested: if firm s produces at least the same output as firm k (i.e., ys,t ≥ yk,t), then the
input set for s must be contained in the set for k (i.e., It(ys,t) ⊆ It(yk,t)).

13 Intuitively,
this means that outputs are freely disposable. These are the only two production axioms
that we will assume in the sequel of this paper.

10Varian (1984) characterized cost minimizing production behavior in terms of the so-called Weak
Axiom of Cost Minimization (WACM). Basically, Proposition 4.1 will state this WACM criterion for our
intertemporal setting.

11Throughout ys,t ≥ yk,t should be interpreted as vector inequalities, implying that the inequality
needs to hold for all components.

12Clearly, this axiom may often be problematic in practical situations. In such instances, we can use
alternative techniques to explicitly account for errors. For example, one may adjust our methodology by
integrating it with the probabilistic method which Cazals, Florens, and Simar (2002) and Daraio and
Simar (2005, 2007) originally proposed in a DEA context. To focus our discussion, we do not consider
this extension here.

13We remark that this assumes that different firms s and k face the same technology in period t.
Obviously, we can also use other hypotheses regarding technological homogeneity/heterogeneity across
firms and time periods. For example, we may assume homogeneous technologies (only) for subsets of
firms (e.g., defined on the basis of observable firm characteristics), or firm-specific technologies that are
constant over time. For compactness, we will again not explicitly implement this.
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Then, we define

ck,t = min
s∈Dt

k







t∑

j=t−J+1

(

pk,jq
t−j+1
s,j + P

t−j+1
k,j Qs,j

)






. (4.3)

for
Dt

k =
{

s|ys,t ≥ yk,t

}

, (4.4)

i.e., the set of observed firms s that produce at least the same output as firm k in period
t (i.e., ys,t ≥ yk,t). By construction, we have k ∈ Dt

k, so that Dt
k 6= ∅. In words,

ck,t represents the minimal cost over this set Dt
k. Obviously, we can compute ck,t by

simply enumerating over all s ∈ Dt
k if the allocations (q1

k,t,q
2
k,t, . . . ,qJ

k,t) and write-offs

(P1
k,t,P

2
k,t, . . . ,PJ

k,t) are given.
We can now state the following result.

Proposition 4.1. Firm k solves (4.1) for a production technology that satisfies Axi-
oms (4.1) and (4.2) if and only if, for all t = J, ..., T ,

t∑

j=t−J+1

(

pk,jq
t−j+1
k,j + P

t−j+1
k,j Qk,j

)

= ck,t. (4.5)

Proof. We use the equivalence between (4.1) and (4.2). Then, the result follows from
Theorem 1 (statements (1) and (2)) of Varian (1984).

This results directly suggests the next measure of cost inefficiency for every period t:

CEt
k ≡

t∑

j=t−J+1

(

pk,jq
t−j+1
k,j + P

t−j+1
k,j Qk,j

)

− ck,t, (4.6)

Obviously, firm k meets the empirical cost minimization criterion (4.5) in Proposition
4.1 if and only if CEt

k = 0. More generally, we have CEt
k ≥ 0, and the value of CEt

k

indicates how much firm k deviates from cost minimizing behavior at time t.
When aggregating over all t = J, . . . , T , we can similarly define an overall cost ineffi-

ciency measure as

CEk ≡
T∑

t=J

t∑

j=t−J+1

(

pk,jq
t−j+1
k,j + P

t−j+1
k,j Qk,j

)

−
T∑

t=J

ck,t. (4.7)

By construction, we have

CEk =
T∑

t=J





t∑

j=t−J+1

(

pk,jq
t−j+1
k,j + P

t−j+1
k,j Qk,j

)

− ck,t



 =
T∑

t=J

CEt
k, (4.8)

which yields the next result.
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Proposition 4.2. CEk = 0 ⇔ CEt
k = 0 ∀t = J, . . . , T .

Proof. The result follows from (4.7) and the definitional fact that CEt
k ≥ 0.

In words, firm k minimizes its total production costs over the full period [J, . . . , T ]
if and only if its production costs are minimal in every single period t. Essentially,
this result shows that our overall cost inefficiency measure CEk satisfies the aggregate
indication axiom of Blackorby and Russell (1999).

4.5 Incomplete information

The previous section assumed an ideal scenario in which the empirical analyst had full
knowledge of the allocations (q1

k,t,q
2
k,t, . . . ,qJ

k,t) and the write-offs (P1
k,t,P

2
k,t, . . . ,PJ

k,t).
In practice, however, only very limited information on allocations and write-offs is often
available. It may even happen that such information is completely absent. This section
shows how to proceed in such (more realistic) instances.

Formally, we will assume that the available information is captured by the polyhedron

Θ(A, b) ≡
{

ρ ∈ R
T J(N+M)
+ : Aρ ≥ b

}

, (4.9)

which represents L restrictions on the allocations of storable inputs and on the write-offs
of durable inputs. Specifically, A is a L × T J(N + M) matrix and b a L × 1 vector, and
ρ represents all vectors that satisfy the constraints imposed by A and b.

To structure our discussion, we will first consider the limiting case in which we
cannot use any information on firms’ allocations and write-offs, which corresponds to

Θ = R
T J(N+M)
+ . Subsequently, we will discuss the intermediate scenario where some

information is available, i.e., Θ ⊂ R
T J(N+M)
+ .

4.5.1 No information on allocations and write-offs

In the absense of full information on storable allocations and durable write-offs, we can
no longer check the condition (4.2) independently for every single time period t. In this
case, we verify if there exists at least one possible specification of (q1

k,t,q
2
k,t, . . . ,qJ

k,t) and

(P1
k,t,P

2
k,t, . . . ,PJ

k,t) that makes firm k’s behavior consistent with the overall cost mini-
mization condition (4.1). More specifically, we define feasible allocations and write-offs
that present firm k as efficient as possible. This evaluates firm k in the most favorable
light and, thus, gives this firm the benefit-of-the-doubt in the absence of full informa-
tion.14

14This benefit-of-the-doubt idea is intrinsic to DEA efficiency evaluations. See, for example, Cherchye
et al. (2007) for a detailed discussion of the benefit-of-the-doubt interpretation of DEA models in the
specific context of composite indicator construction.
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The following linear program operationalizes this idea:

min
ck,t≥0,

(q1
s,t,...,qJ

s,t)T
t=1≥0,

(P1
k,t

,...,PJ
k,t

)T
t=1≥0

T∑

t=J





t∑

j=t−J+1

(

pk,jq
t−j+1
k,j + P

t−j+1
k,j Qk,j

)

− ck,t



 (4.10a)

s.t. ck,t ≤
t∑

j=t−J+1

pk,jq
t−j+1
s,j + P

t−j+1
k,j Qs,j ∀s ∈ Dt

k,

∀t = J, . . . , T,
(4.10b)

J∑

j=1

q
j
s,t = qs,t ∀s ∈ Dt

k,

∀t = 1, . . . , T,
(4.10c)

J∑

j=1

P
j
k,t = Pk,t ∀t = 1, . . . , T,

(4.10d)

In this program, the objective minimizes firm k’s cost inefficiency (as defined in (4.7))
in terms of the chosen allocation and write-off schemes. The first constraint imposes
that ck,t effectively represents the minimal cost to produce the output yk,t (over the set
Dt

k). The second and third constraints impose the adding-up restrictions that apply to
feasible specifications of (q1

k,t,q
2
k,t, . . . ,qJ

k,t) and (P1
k,t,P

2
k,t, . . . ,PJ

k,t). Intuitively, cost
inefficiency occurs as soon as some other firm s is characterized by a lower production
cost than firm k no matter what allocations and write-offs are used.15

The allocations and write-off schemes of inputs acquired in periods [T −J +2, . . . , T ]
deserve some discussion at this point. These inputs are used beyond the time horizon T
(until T +J −1 for inputs acquired in period T ) and for them we can predict the optimal
allocation of the LP solver. Since shifted cost allocations to periods [T +1, . . . , T +J −1]
do not enter the objective of (4.10), optimal choices for firm k’s allocations and write-offs
of [T − J + 2, . . . , T ] consist of distributing these costs entirely over the periods beyond
T . Thus, firm k is efficient by default for the periods [T − J + 2, . . . , T ]. This is an
inherent feature of the benefit-of-the-doubt idea. Furthermore, this prediction becomes
invalid when partial information on allocations and write-offs is added.

Recall from Section 4.3 that we cannot evaluate dynamic cost efficiency for periods
[1, . . . , J − 1] due to data limitations. Together with our discussion in the previous
paragraph, this implies that we can only effectively discriminate among firms within the

15Similarly as in conventional multiplier formulations of DEA, the allocations and write-offs that
solve (4.10) are not necessarily unique. As a result, the efficiency decomposition in (4.8) is also not
necessarily unique. However, one can use a similar procedure as in Kao and Hwang (2008) to find a
unique decomposition by maximizing per-period efficiency while maintaining overall efficiency.
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time window [J, . . . , T −J +1]. Note the impact of both J and T on the size of this time
window: the larger J (T ), the smaller (larger) this time window and the more (fewer)
periods of efficient by default. This reveals a clear trade-off between J and T . While
T is often determined by the data at hand, one can vary J to check sensitivity of the
results.

4.5.2 Partial information on allocations and write-offs

In many practical situations, it is possible to put some additional restrictions on the
feasible allocation and write-off schemes. Such partial information can be incorporated
by suitably specifying Θ(A, b). Correspondingly, we can append the restriction

(q1
s,t, . . . ,qJ

s,t,P
1
k,t, . . . ,PJ

k,t)
T
t=1 ∈ Θ(A, b) (4.11)

to program (4.10), and solve the resulting (linear) problem. Clearly, by using restriction
(4.11) we constrain the solution space, which will generally result in higher values of the
computed cost inefficiencies.

To take a specific instance, let (qu,A
k,v )u∈U⊆[1,...,J ] represent lower bounds on the quan-

tity allocations of the storable inputs for firm k and time period(s) v ∈ V ⊆ [J, . . . , T ].
Similarly, let (Pw,A

k,z )w∈W ⊆[1,...,J ] be known lower bounds on the price write-offs of the
durable inputs for time period(s) z ∈ Z ⊆ [J, . . . , T ]. We then define

Θ =
{

qu
k,v ≥ q

u,A
k,v , ∀u ∈ U, ∀v ∈ V

Pw
k,z ≥ P

w,A
k,z , ∀w ∈ W, ∀z ∈ Z

}

.

As a limiting case, instantaneous input consumption complies with q
u,A
k,v = (qk,v, 0, . . . , 0)

or, equivalently, Pw,A
k,z = (Pk,z, 0, . . . , 0).

4.5.3 Write-off hypotheses

By using this approach, we can actually include (and check) alternative hypotheses
regarding the allocation of the durable costs to individual time periods (i.e., specific
write-off schemes). On the one hand, write-off schemes are often dictated by standard
accounting practices for specific durable inputs so that write-off schemes are public
information. Imposing these write-off schemes in the LP then allows to check whether
these write-off schemes are cost efficient for a firm. On the other hand, durable inputs are
often an aggregate of multiple durable inputs (cfr. “capital” in the empirical illustration)
so that it is unclear a priori what the exact write-off scheme is. Imposing alternative
write-off hypotheses in the LP can then help to clarify this. For example, it might often
be reasonable to assume that the firm’s valuation of a durable input diminishes over
time. In our framework, this corresponds to

P1
k,t ≥ P2

k,t ≥ . . . ≥ PJ
k,t, (4.12)
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which complies with a degressive write-off of investment costs. From our above expla-
nation, it follows that this is also consistent with the assumption of technological im-
provement, where older machines are scrapped and replaced by newer – technologically
improved – ones over time.

Alternatively, a linear write-off of investment corresponds to

P1
k,t = P2

k,t = . . . = PJ
k,t, (4.13)

implying that P
j
k,t = Pk,t/J ∀j = 1, . . . , J . Both hypotheses can be tested by adding

(4.12) or (4.13) for t = J, . . . , T to Θ(A, b).

4.6 Extensions

We next focus on a number of extensions of our basic framework set out in the previous
section. These extensions highlight the versatility of our framework and, of course, are
not exhaustive. First, we show how to convert our (difference) cost inefficiency measures
(4.6) and (4.7) in ratio form. Then, we discuss the extension of our framework to allow
for heterogeneous input lifetime and production delays. Finally, we indicate how to
proceed in the absence of input price information by applying shadow pricing. Here,
we will also explain the decomposition of cost inefficiency as defined above in terms of
technical and allocative inefficiency. We will illustrate the different extensions in our
empirical application in Section 4.7.

4.6.1 Ratio measures of inefficiency

A downside of our cost inefficiency measure in (4.7) is that it is not invariant to resca-
ling of prices and inputs. However, one can turn this difference measure into a ratio
measure of cost inefficiency by an appropriate normalization. In principle, a multitude
of normalizations are possible. A natural choice is to divide by the actual cost, i.e.,

RCEk ≡ CEk
∑T

t=J

∑t
j=t−J+1

(

pk,jq
t−j+1
k,j + P

t−j+1
k,j Qk,j

) (4.14)

This relative measure is situated between 0 and 1 and expresses the proportion of total
production costs that can be saved by minimizing total production costs over the periods
[J, . . . , T ].16

Analogously to (4.8), we can decompose this overall ratio measure in terms of per-
period measures.17 In this case, we have that RCEk equals a weighted sum of per-period
cost inefficiencies in ratio form RCEt

k. Specifically, it uses the period-specific weights

wt
k ≡

∑t
j=t−J+1

(

pk,jq
t−j+1
k,j + P

t−j+1
k,j Qk,j

)

∑T
t=J

∑t
j=t−J+1

(

pk,jq
t−j+1
k,j + P

t−j+1
k,j Qk,j

) , (4.15)

16This normalization mirrors the one used by Chambers et al. (1998) for profit efficiency.
17The following decomposition parallels Färe and Zelenyuk (2003)’s decomposition of industry revenue

efficiency as a weighted sum of firms’ revenue efficiency.
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which represent the proportions of total production costs allocated to every period t.
This obtains

RCEk =
T∑

t=J

wt
k

CEt
k

∑t
j=t−J+1

(

pk,jq
t−j+1
k,j + P

t−j+1
k,j Qk,j

)

=
T∑

t=J

wt
k



1 − ck,t
∑t

j=t−J+1

(

pk,jq
t−j+1
k,j + P

t−j+1
k,j Qk,j

)





=
T∑

t=J

wt
kRCEt

k, (4.16)

As a final note, we indicate that 1 − RCEk and 1 − RCEt
k give the conventional cost

efficiency measures, i.e., minimal cost divided by actual cost.
Alternatively, (4.14) can be decomposed as a combination of a relative measure of

static cost saving and a static misallocation measure:

RCEk =
CEk

∑T
t=1

(

pk,tqk,t + Pk,tQk,t

) ×
∑T

t=1

(

pk,tqk,t + Pk,tQk,t

)

∑T
t=J

∑t
j=t−J+1

(

pk,jq
t−j+1
k,j + P

t−j+1
k,j Qk,j

)

= static cost saving × static misallocation
︸ ︷︷ ︸

≥1

(4.17)

The first term measures the potential cost saving as a fraction of total observed costs
while the second term shows the fraction of observed costs over total production costs.
This second term highlights potential mismatch of static and dynamic cost efficiency
measures. One can further decompose (4.17) similarly as in (4.16).

4.6.2 Heterogeneous input lifetime and production delays

Until now, we have assumed that all durable inputs have the same lifetime J . Admittedly,
this may sometimes be a too strong assumption. In addition, our current specification
does not allow for production delays. As we show next, we can solve both issues by
making use of the concept of delay matrices.

Specifically, let DD = (dD
1 , . . . , dD

J ) ∈ {0, 1}M×J denote a binary delay matrix, where
each row represents a durable input. For example, for the durable input m we may use
one of the following specifications:

• (1, 0, . . . , 0
︸ ︷︷ ︸

J−1

) if input m is an instantaneous input;

• (1, . . . , 1) if input m is a durable input with lifetime J ;

• (0, . . . , 0
︸ ︷︷ ︸

U

, 1, . . . , 1
︸ ︷︷ ︸

J−U

) if input m is a durable input usable after a delay of U < J

periods with a lifetime of J − U periods;
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• (1, . . . , 1
︸ ︷︷ ︸

U

, 0, . . . , 0
︸ ︷︷ ︸

J−U

) if input m is a durable input usable over U < J periods.

Similarly, let DS = (dS
1 , . . . , dS

J ) ∈ {0, 1}N×J represent a binary delay matrix for the
storable inputs. Then, we can formulate the next modified optimization problem of firm
k:

min
(q1

t ,...,qJ
t )T

t=1

(P1
t ,...,PJ

t )T
t=1

T∑

t=J

t∑

j=t−J+1

pk,jd
S
t−j+1q

t−j+1
j + P

t−j+1
j dD

t−j+1Qk,j (4.18a)

s.t.





J∑

j=1

dS
j q

j
t−j+1,

J∑

j=1

dD
j Qk,t−j+1



 ∈ It(yk,t) ∀t = J, . . . , T (4.18b)

Closer inspection reveals that dS
j q

j
t−j+1 and dD

j Qk,t−j+1 only selects those inputs
that are usable in period j. In this case, J stands for the maximum lifetime over all
durable and storable inputs. We further note that we can include a resale value for all
durable inputs simply by setting J to maximum lifetime + 1. The final write-off of the
durable inputs is then the resale value of the durable inputs which can be subtracted
from the per-period cost to reflect resale of the durable inputs.

The associated linear program is

min
ck,t≥0,

(q1
s,t,...,qJ

s,t)T
t=1≥0,

(P1
k,t

,...,PJ
k,t

)T
t=1≥0

T∑

t=J





t∑

j=t−J+1

(

pk,jd
S
t−j+1q

t−j+1
k,j + P

t−j+1
k,j dD

t−j+1Qk,j

)

− ck,t





(4.19a)

s.t. ck,t ≤
t∑

j=t−J+1

pk,jq
t−j+1
s,j dS

t−j+1 + P
t−j+1
k,j dD

t−j+1Qs,j ∀s ∈ Dt
k,

∀t = J, . . . , T,
(4.19b)

J∑

j=1

q
j
s,td

S
j = qs,t ∀s ∈ Dt

k,

∀t = 1, . . . , T,
(4.19c)

J∑

j=1

P
j
k,td

D
j = Pk,t ∀t = 1, . . . , T,

(4.19d)

(q1
s,t, . . . ,qJ

s,t,P
1
k,t, . . . ,PJ

k,t)
T
t=1 ∈ Θ(A, b). (4.19e)
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It is easy to verify that this program reduces to (4.10) for DS = 1N×J and DD =
1M×J . Furthermore, any zero values in DS and DD immediately imply zero values for
the corresponding allocations and write-offs. In other words, the use of delay matrices
allows us to impose a priori restrictions on the storable allocations and durable write-
offs. We also remark that, in principle, we can specify firm-specific delay matrices if this
seems desirable.

4.6.3 Shadow prices and technical inefficiency

So far, we have focused on economic (cost) efficiency, which requires price information
for the relevant inputs. By contrast, technical efficiency analysis does not require such
price information and, thus, can be used if limited price information is available.

Generally, technical efficiency criteria/measures can be characterized as economic
efficiency criteria/measures evaluated at so-called “shadow prices”.18 Thus, by establis-
hing the shadow price representation of our dynamic efficiency concepts, we can define
technical efficiency notions that explicitly account for the dynamic (storable and durable)
nature of the inputs.

It is easy to use shadow pricing if the exact allocation of storable inputs over time
periods (i.e., (q1

s,t, . . . ,qJ
s,t)

T
t=1) is known to the empirical analyst. In that case, it suffices

to solve (4.19) with the input prices (Pk,t)
T
t=1 and (pk,t)

T
t=1 as additional free variables

that are subject to a non-negativity constraint and the normalization

T∑

t=J





t∑

j=t−J+1

pk,jq
t−j+1
k,j dS

t−j+1 + P
t−j+1
k,j dD

t−j+1Qk,j



 = 1.

We remark that this price normalization implies CEk = RCEk. The resulting shadow
cost inefficiency measure (or technical inefficiency measure T Ek) measures cost efficiency
using shadow prices that give the benefit-of-the-doubt to the firm. Thus, these shadow
prices are chosen as to maximize the shadow cost efficiency of the firm.

Let T Ek represent the “technical inefficiency” measure that is obtained as the solution
of the resulting linear program. By construction, we have T Ek ≤ RCEk. The difference
between T Ek and RCEk gives us a measure AEk of “allocative inefficiency”, i.e.,

T Ek + AEK = RCEk ⇔ AEk = RCEk − T Ek. (4.20)

Allocative inefficiency is the difference between cost inefficiency using market prices
and shadow cost inefficiency using optimal shadow prices. This shows that reducing
cost inefficiency can be achieved by a combination of two effects: (i) reducing technical

18In DEA terminology, this shadow price characterization of technical efficiency corresponds to the
“multiplier” formulation of DEA models. Practical applications often make use of DEA models in “enve-
lopment” form, which is dual to this multiplier formulation. In our set-up, the envelopment formulation
can be obtained as the dual of the linear program that we define below (to compute T Ek). We refer to
Färe and Primont (1995) for a more detailed discussion.
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inefficiency by minimizing the level of inputs conditional on outputs and (ii) selecting the
cost minimizing input mix out of all technically efficient inputs. Allocative inefficiency
can occur when the realized a posteriori prices deviate from the expected a priori input
prices. In our context of durable and storable inputs, intertemporal dependencies can
exacerbate this allocative inefficiency: buying storable and/or durable inputs right before
a persistent price drop can cause a persistent per-period inefficiency over subsequent
periods, because the cost of these inputs is distributed over J periods. Thus, one slip
up can resonate for many subsequent time periods.

Interestingly, because RCEk = CEk under our price normalization and using (4.7),
we can also decompose AEk in period-specific allocative inefficiencies, as follows:

AEk ≡
T∑

t=J

(

RCEt
k − T Et

k

)

=
T∑

t=J

AEt
k. (4.21)

Finally, matters are more complicated when the allocation (q1
s,t, . . . ,qJ

s,t)
T
t=1 is unob-

served. In that case, the analogue of the programming problem (4.19) becomes nonlinear
in unknown prices and quantities. We can restore linearity by making specific assump-
tions regarding the storable input allocation. For example, if we are willing to assume
that all DMUs allocate their storable inputs in the same way over time, then we can use
a similar procedure as outlined in Cook et al. (2000) and Cherchye et al. (2013).

4.7 Empirical illustration

We apply our model to a panel dataset of Swiss regional railway companies that was also
studied by Farsi et al. (2005).19 The original panel is unbalanced and contains yearly
information on 50 railway companies over the period 1985 − 1997. From this dataset,
we constructed a balanced panel that covers the 13-year period for 37 companies, and
which contains all input and output information needed to apply our methodology. The
constructed balanced panel contains 481 (= 13 × 37) firm observations.

In what follows, we first motivate our selection of outputs and inputs, where we will
use capital expenses as a durable input. Then, we present the results of our empirical
analysis, which will mainly focus on overall and per-period efficiencies as well as technical
and allocative inefficiency. We conclude by a number of sensitivity checks.

4.7.1 Output and input specification

The original dataset contains information on total expenses, labor and energy expenses,
as well as the total number of employees, electricity consumption, network length, total
number of available seats, total number of train-kilometers, passenger-kilometers and
ton-kilometers. Capital expenses are defined as the residual after deducting labor and
energy from the total expenses. Prices for labor and energy are found by dividing

19The data are available at http://people.stern.nyu.edu/wgreene/Econometrics/PanelDataSets.

htm, which also contains a detailed description of all variables.

http://people.stern.nyu.edu/wgreene/Econometrics/PanelDataSets.htm
http://people.stern.nyu.edu/wgreene/Econometrics/PanelDataSets.htm
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(labor and energy) expenses by total quantity (number of employees and total electricity
consumption in kWh, respectively). The price of capital is defined by dividing capital
expenses by total number of seats.

Following Farsi et al. (2005), we use total passenger-kilometers and ton-kilometers
as our two outputs in our following analysis. Next, we have three inputs: labor, energy
and capital expenses. We refer to Farsi et al. (2005) for more details on the data.
Table 4.2 presents summary statistics. The most important observation is that labor
and capital expenditures are the major costs (52.82% and 43.41% on average), while
energy expenditures represents only a small fraction of the total cost (i.e., 3.77% on
average).

mean std median min max share (in %)

Passenger output in passenger kilometers (Q2) (×108) 0.2843 0.5192 0.0919 0.0041 3.1100 95.27
Goods output in ton kilometers (Q3) (×107) 0.2135 0.8158 0.0226 0.0000 5.9400 4.73

Length of railway network in km (NETWORK) 39.5340 61.0973 22.8200 3.8980 376.9970 n.a.
Number of stations on the network (STOPS) 20.8274 20.1613 15.0000 4.0000 121.0000 n.a.

Labor price adjusted for inflation (PL) (×105) 0.8550 0.0602 0.8557 0.6093 1.0493 n.a.
Number of employees (STAFF) (×103) 0.1401 0.2517 0.0520 0.0120 1.6410 n.a.
Labor expenditures (LABOREXP) (×107) 1.2189 2.1945 0.4406 0.0985 14.6988 52.82

Price of electricity in CHF per kWh (PE) 0.1574 0.0240 0.1580 0.0763 0.2652 n.a.
Total consumed electricity in kWh (KWH) (×107) 0.5775 1.0317 0.1980 0.0082 6.5849 n.a.
Energy expenditures (ELECEXP) (×105) 8.4849 12.9842 3.0220 0.1400 81.0408 3.77

Capital price per seat (PK) (×106) 0.2182 0.3644 0.0872 0.0212 2.4105 n.a.
Quantity of Capital (CAPITAL) 43.4092 9.4026 41.7978 23.8892 77.3315 n.a.
Capital expenditures (×106) 8.7849 13.4185 3.9922 0.6119 87.9753 43.41

Total costs adjusted for inflation (CT) (×108) 0.2182 0.3644 0.0872 0.0212 2.4105 100

Table 4.2: Summary statistics of the railway data (481 observations).

As indicated above, capital expenditures form a prime example of durable inputs.
Therefore, while we consider labor and energy expenditures as instantaneously consumed
(i.e., not storable or durable), we will treat capital expenditures as durable. For the
general model specification (with capital usable in J years), this obtains the 3 × J delay
matrix

DD =







1 0 . . . 0
1 0 . . . 0
1 1 . . . 1
︸ ︷︷ ︸

J−1







,

with labor, energy and capital corresponding to rows 1, 2 and 3, respectively.

Table 4.3 reports summary statistics on our durable input. We see that, in nominal
terms, capital costs are steadily increasing until 1991. Within individual years, we also
observe considerable variation across firms. The magnitude of this variation is fairly
stable over time.

It follows from our discussion in the previous sections that treating capital expenses
as a durable input requires us to use discounted prices, and to specify the lifetime of
capital (i.e., J). In our application all provided prices are adjusted for inflation with
respect to 1997 prices. Next, capital costs are related to equipment as well as materials.
This makes it hard to specify the exact lifetime of this durable input. For this reason,
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year mean std min max

85 7821.9918 13415.8909 675.5952 79364.5942
86 7947.3623 13476.0897 611.8980 79606.2277
87 8226.9291 13474.9261 614.8458 78815.1313
88 8769.3795 13483.8216 725.2748 79002.7419
89 9293.5348 13890.6071 1104.4175 79672.0210
90 9531.1382 14310.4937 833.1193 82232.3410
91 9683.8843 14759.9689 991.5967 86268.9002
92 9541.3585 14988.2197 949.5515 87975.3422
93 8868.5766 13414.5760 940.9871 78469.9559
94 8709.7330 13665.2525 704.6633 80731.6209
95 8707.0591 12669.9599 691.9920 73890.1362
96 8396.3872 12086.1047 780.2419 70634.0593
97 8706.7027 12561.9671 873.0000 73087.0000

Table 4.3: Capital costs: summary statistics per year (in 1000 CHF).

and to clearly demonstrate the potential impact of intertemporal dependencies between
inputs, we will mainly focus on a minimalistic scenario with J = 2. As an additional
exercise, we will also consider alternative values for J , to check robustness of our main
conclusions.

4.7.2 Cost efficiency analysis

In summary, the dynamic nature of our empirical analysis relates to a single durable
input, capital expenses. Moreover, this input represents a fairly large fraction of the total
cost relative to the instantaneous inputs, labor and energy expenses (see our discussion
of Table 4.2). In what follows, we will show that ignoring the intertemporal (durable)
aspect of capital can substantially affect the efficiency analysis. In turn, referring to our
discussion in the Introduction, this can considerably distort regulatory policies (in our
case for Swiss railway companies) that are based on the efficiency results. Obviously,
these distortions will generally be more pronounced in production settings where durable
inputs form an even more important fraction of total costs, and in settings with storable
inputs in addition to durable inputs.

We first consider the differences in cost inefficiencies between the dynamic and static
setting. Figure 4.1 shows the differences between the CEt

k-values for our dynamic model
(with J = 2) and the static model (which corresponds to J = 1). The differences in per-
period inefficiencies are quite substantial: in some years (such as 89, 92 and 94) ignoring
intertemporal effects leads to an underestimation of productive inefficiency by as much
as 4 million CHF, while in other years (e.g., 88, 90 and 93) it leads to an overestimation
by no less than 6 million CHF. The differences are statistically significant: comparing
the cumulative density functions of CEt

k using a Kolmogorov-Smirnov test, we reject at
the 1% significance level the hypothesis that both densities have the same underlying
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Figure 4.1: Dynamic (J = 2) vs. static (J = 1) CEt
k.

Next, we turn to the ratio measure RCEk that we defined in (4.14). Comparing
the results for J = 1 with those for J = 2 provides further insight into the severity and
frequency of disagreement between the dynamic and static inefficiency models. Figure 4.2
depicts a histogram of the differences in RCEt

k-values. Both models agree in terms of
RCEt

k in 61.94% of all cases. For the cases where they do not agree, this histogram
shows that inefficiency is more often overestimated by the static model: in 13.02% of
all cases the static model overestimates inefficiency by at least 5%, while inefficiency is
underestimated by at least 5% in only 4.14% of the cases.

Figure 4.3 decomposes RCEt
k in a static cost saving and a static misallocation com-

ponent (as in (4.17)). The former represents the relative cost saving with regard to total
observed costs, while the latter shows the discrepancy between observed and allocated
costs. These histograms show that 3.76% − 13.39% of total costs is not allocated over
the 12 years under the dynamic model.

Next, we can classify the firms based on the evolution of RCEt
k over time. We distin-

guish 4 different categories: (i) persistently efficient firms over time (i.e., ∀t : RCEt
k ≤

10−8); (ii) mostly improving firms (i.e.,
∑1997

t=1987

[

RCEt−1
k − RCEt

k > 0
]

≥ 6) that are

not persistently efficient; (iii) mostly non-improving firms that are not persistently in-
efficient and (iv) persistently inefficient firms (i.e., ∀t : RCEt

k ≥ 10−2). Table 4.4 and

20The value of the test statistic is 0.1351, which corresponds to a p-value of 5.24 × 10−4.
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Figure 4.2: Histogram of dynamic - static RCEt
k (> 0).

0 0.2 0.4
0

5

10

15

20

25

Static cost saving
1 1.05 1.1 1.15

0

2

4

6

8

10

12

Static misallocation
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Figure 4.4 show this classification of every firm. This analysis reveals that a majority of
firms (22/37 ≈ 59%) is persistently efficient or mostly improving over time.

firm id

Persistently efficient firms 4, 5, 10, 14, 18, 23, 26, 31, 34, 37, 39, 41, 42, 45, 49
Mostly improving firms (i.e., at least for 6/12 periods) 2, 3, 9, 12, 24, 27, 46
Mostly non-improving firms (i.e., at least for 6/12 periods) 6, 7, 8, 21, 36, 43, 47, 48
Persistently inefficient firms 13, 15, 16, 17, 20, 22, 30

Table 4.4: Firm classification (J = 2).

86 88 90 92 94 96
−1

0

1

2

3

4

5

6

7
x 10

−10

Time

R
C

E
kt

Persistently efficient

86 88 90 92 94 96
0

0.1

0.2

0.3

0.4

0.5

Time

R
C

E
kt

Persistently inefficient

86 88 90 92 94 96
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

R
C

E
kt

Mostly improving

86 88 90 92 94 96
−0.1

0

0.1

0.2

0.3

0.4

Time

R
C

E
kt

Mostly non−improving

Figure 4.4: Classification of firms based on RCEt
k over time: (i) persistently efficient;

(ii) persistently inefficient; (iii) mostly improving and (iv) mostly non-improving.

As a following exercise, we redo our analysis by using shadow prices. As explained
above, this effectively computes the technical inefficiency measure T Ek, which we can
further use to calculate the aggregate allocative inefficiency measure AEk (in (4.20)) as
well as per-period allocative inefficiencies AEt

k (in (4.21)). Table 4.5 shows the T Ek and
AEk results for all firms. We find that technical inefficiency is rather negligible for the
firms under study: the maximal T Ek-value amounts to no more than 4.899 × 10−9. In
contrast, the AEk-values are quite high for a number of firms: the worst performing firm
has an allocative inefficiency of as much as 0.3636. Figure 4.5 also shows that there is
substantial variation in the AEt

k-values over time. One possible explanation for the large
discrepancy between T Ek and RCEk is that the assumption of perfect price foresight is
too strong.
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firm id T Ek rank AEk rank

2 0,0000 26 0,0276 23
3 0,0000 24 0,0399 25
4 0,0000 16 0,0000 11
5 0,0000 8 0,0000 5
6 0,0000 17 0,0132 19
7 0,0000 23 0,0170 21
8 0,0000 28 0,0267 22
9 0,0000 29 0,1993 34
10 0,0000 5 0,0000 13
12 0,0000 25 0,0419 26
13 0,0000 36 0,3636 37
14 0,0000 33 0,0000 2
15 0,0000 27 0,0938 30
16 0,0000 37 0,1528 31
17 0,0000 10 0,1605 32
18 0,0000 31 0,0000 3
20 0,0000 3 0,2009 35
21 0,0000 30 0,0883 28
22 0,0000 6 0,2082 36
23 0,0000 2 0,0000 8
24 0,0000 20 0,0846 27
26 0,0000 22 0,0000 9
27 0,0000 9 0,0041 16
30 0,0000 32 0,1862 33
31 0,0000 1 0,0000 15
34 0,0000 35 0,0000 14
36 0,0000 11 0,0127 18
37 0,0000 7 0,0000 6
39 0,0000 12 0,0000 7
41 0,0000 34 0,0000 1
42 0,0000 21 0,0000 12
43 0,0000 15 0,0139 20
45 0,0000 13 0,0000 4
46 0,0000 4 0,0937 29
47 0,0000 18 0,0082 17
48 0,0000 14 0,0307 24
49 0,0000 19 0,0000 10

Table 4.5: T Ek and AEk.
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4.7.3 Robustness checks

We conclude our empirical analysis by conducting a number of robustness checks. These
additional exercises will further illustrate the versatility of our general framework, in
terms of relaxing or imposing particular assumptions in the intertemporal efficiency
assessment. First, we consider the effect of specifying J on our results. Second, we
investigate the effects of different environmental variables on the efficiency scores. Finally,
we compute efficiency results when imposing particular (degressive and linear) structure
on the write-off schemes used by the evaluated firms.

We begin by evaluating the sensitivity of the overall dynamic inefficiencies of our
37 firms to alternative specifications of J (> 1). Table 4.6 shows the scores and the
relative rankings of all firms for varying choices of J . An interesting observation is
that, although we observe some changes for different J-values, the firm rankings remain
largely unchanged in general. In a similar vein, for most firms the inefficiency scores
do not change much with J . This is confirmed by 6 Kolmogorov-Smirnov tests that
verify equality of distribution of the inefficiency scores: all p-values ranged between
0.4787 − 0.9995, so that we cannot reject the null hypothesis that the inefficiencies come
from the same underlying distribution.

Next, we examine whether differences in firms’ (observable) environments impact the
efficiency results. In this respect, our dataset contains information on the length of the
railway network (NETWORK) and the number of stations in the network (STOPS) (see
Table 4.2). A priori, one may expect both variables to have a negative effect on efficiency,
as larger networks can give rise to higher costs due to maintenance and, similarly, be-
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firm id J=2 rank J=3 rank J=4 rank J=5 rank

2 0,0276 23 0,0215 23 0,0107 22 0,0016 22
3 0,0399 25 0,0323 25 0,0301 25 0,0236 25
4 0,0000 11 0,0000 12 0,0000 12 0,0000 7
5 0,0000 1 0,0000 16 0,0000 13 0,0000 1
6 0,0132 19 0,0129 22 0,0112 23 0,0064 23
7 0,0170 21 0,0091 21 0,0015 21 0,0004 21
8 0,0267 22 0,0233 24 0,0204 24 0,0220 24
9 0,1993 34 0,1899 35 0,1856 35 0,1568 34

10 0,0000 13 0,0000 18 0,0000 20 0,0000 19
12 0,0419 26 0,0407 26 0,0396 26 0,0406 26
13 0,3636 37 0,3677 37 0,3670 37 0,3616 37
14 0,0000 4 0,0000 9 0,0000 5 0,0000 16
15 0,0938 30 0,0813 28 0,0658 27 0,0572 27
16 0,1528 31 0,1428 32 0,1426 32 0,1379 32
17 0,1605 32 0,1421 31 0,1254 31 0,1148 31
18 0,0000 5 0,0000 7 0,0000 2 0,0000 20
20 0,2009 35 0,1847 33 0,1681 33 0,1553 33
21 0,0883 28 0,0855 29 0,0809 29 0,0672 28
22 0,2082 36 0,2092 36 0,2107 36 0,2081 36
23 0,0000 8 0,0000 10 0,0000 7 0,0000 6
24 0,0846 27 0,0799 27 0,0780 28 0,0682 29
26 0,0000 9 0,0000 6 0,0000 10 0,0000 8
27 0,0041 16 0,0000 8 0,0000 15 0,0000 5
30 0,1862 33 0,1854 34 0,1772 34 0,1788 35
31 0,0000 15 0,0000 3 0,0000 1 0,0000 10
34 0,0000 14 0,0000 15 0,0000 16 0,0000 9
36 0,0127 18 0,0000 2 0,0000 9 0,0000 13
37 0,0000 6 0,0000 5 0,0000 11 0,0000 4
39 0,0000 7 0,0000 11 0,0000 3 0,0000 14
41 0,0000 3 0,0000 13 0,0000 18 0,0000 3
42 0,0000 12 0,0000 19 0,0000 8 0,0000 17
43 0,0139 20 0,0000 17 0,0000 14 0,0000 2
45 0,0000 2 0,0000 14 0,0000 19 0,0000 11
46 0,0937 29 0,0916 30 0,0961 30 0,0895 30
47 0,0082 17 0,0000 1 0,0000 6 0,0000 12
48 0,0307 24 0,0032 20 0,0000 17 0,0000 18
49 0,0000 10 0,0000 4 0,0000 4 0,0000 15

Table 4.6: RCEk for different J .
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cause more stops imply additional (e.g., time-related) expenditures, all else equal. Next,
the dataset contains a dummy variable indicating whether the network has a rack rail
(“cremaillere”; represented by the binary variable RACK). Rack rails are special rails
that are used to aid climbing of trains on steep terrain. Therefore, one may argue that
the presence of rack rails effectively signals a less favorable operational environment.

We investigate how these variables affect our results by conducting, for each variable
separately, an extra efficiency analysis in which we add the environmental variable zs,t ∈
R+ as an additional output. Basically, this procedure implies that the dominating set
(4.4) is modified to (only) include those peers that (1) produce at least the same output
and (2) operate under the same, or worse, environmental conditions than the firm under
examination. Following Ruggiero (1996), the modified dominating set is:

Dt
k =

{

s|ys,t ≥ yk,t

}

∩
{

s|zs,t = zk,t} zs,t ∈ {0, 1}
s|zs,t ≥ zk,t} Otherwise

,

where zs,t ≥ zk,t implies s operates under worse conditions than k. By comparing these
new efficiency results with the original ones for J = 2 (see Table 4.6), we can investigate
the efficiency effect of the three contextual variables under study.

The results of these three exercises are summarized in Figures 4.6-4.7-4.8. Specifically,
each of these figures sets out the firm ranks for the new exercises to the original firm
ranks. Firms situated below the 45 degree line have a higher ranking (i.e., lower rank
number) when the contextual variable (respectively, NETWORK, STOPS and RACK)
is taken into account while, obviously, the opposite holds for firms above the 45 degree
line. For each of our three environmental variables, we find that the firm ranks are
fairly mildly affected, with the exception of a few firms. This is confirmed by Wilcoxon
signed-rank tests, which check the statistical significance of the difference between the
new and original rankings: it turns out that there is no significant difference for any of
the three variables under evaluation.21 We may thus conclude that none of our three
contextual variables has a substantial effect on the efficiency patterns that we presented
above.

Finally, at the end of Section 4.5 we indicated that an interesting feature of our
methodology is that it allows for imposing specific hypotheses regarding the allocation
of the costs of durables to individual time periods (i.e., putting structure on the write-off
schemes). As a last robustness check, we compute efficiency results for the degressive
scheme in (4.12) and the linear scheme in (4.13).

Our results are given in Table 4.7. We observe that, for a number of firms, the
inefficiency values for the degressive write-off scheme are somewhat above the ones that
we obtained in our original analysis (see the “Unconstrained” column), and the values
for the linear scheme are always above those for the degressive scheme. Actually, this

21More specifically, the Wilcoxon signed-rank test compares the ranking of individual firms by first
taking the difference in ranking. Observations with zero difference are dropped. These differences are
then ranked and these ranks are summed. If there is no difference in ranking then the test statistic is zero.
For NETWORKS the statistic equals 269 and the associated p-value is 0.3136, for STOPS the statistic
is 258 and the p-value 0.1576, and for RACK the statistic amounts to 236 and the p-value 0.1246.
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Figure 4.6: Firm rank comparison: with and without NETWORK as output.
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Figure 4.7: Firm rank comparison: with and without STOPS as output.
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Figure 4.8: Firm rank comparison: with and without RACK as output.

could be expected a priori, as the degressive and linear models put increasingly stringent
structure on possible allocations of capital costs to successive time periods. However, the
firms’ inefficiency differences are very small in general. In fact, the efficiency rankings
hardly change. Thus, we may safely conclude that the efficiency results of our main
analysis presented above are quite robust with respect to using degressivity or linearity
for the write-off schemes of the durable capital input.

4.8 Conclusion

We have presented a methodology for intertemporal analysis of economically (cost) effi-
cient production behavior that can account for intertemporal considerations related to
the use of storable and durable inputs. The methodology is intrinsically nonparametric,
which means that it does not require imposing (nonverifiable) functional structure on
the production technology. The methodology is versatile in that it can account for pro-
duction delays of durable inputs. In addition, it allows for defining a cost inefficiency
measure that can be decomposed in period-specific inefficiencies. These cost inefficiencies
can be computed through simple linear programming.

Our application to Swiss railway companies has shown the empirical usefulness of
our methodology. Most notably, it showed that explicitly accounting for the dynamic
nature of (in our case capital) inputs can significantly impact the efficiency results. For
a considerable number of firms, we found that per-period inefficiencies for our model
with capital investments as durable inputs differed substantially from the ones for the
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firm id Unconstrained rank Degressive rank Linear rank

2 0,0276 23 0,0299 22 0,0319 19
3 0,0399 25 0,0397 25 0,0407 23
4 0,0000 11 0,0000 12 0,0000 1
5 0,0000 1 0,0000 13 0,0011 14
6 0,0132 19 0,0139 17 0,0152 17
7 0,0170 21 0,0176 19 0,0210 18
8 0,0267 22 0,0314 23 0,0438 24
9 0,1993 34 0,2129 36 0,2335 36
10 0,0000 13 0,0000 2 0,0000 4
12 0,0419 26 0,0434 26 0,0468 25
13 0,3636 37 0,3621 37 0,3595 37
14 0,0000 4 0,0014 15 0,0042 15
15 0,0938 30 0,1026 30 0,1119 30
16 0,1528 31 0,1578 31 0,1682 31
17 0,1605 32 0,1669 32 0,1803 32
18 0,0000 5 0,0000 14 0,0000 10
20 0,2009 35 0,2110 35 0,2225 35
21 0,0883 28 0,0912 28 0,0964 28
22 0,2082 36 0,2086 34 0,2117 34
23 0,0000 8 0,0000 11 0,0000 13
24 0,0846 27 0,0880 27 0,0908 27
26 0,0000 9 0,0000 3 0,0000 6
27 0,0041 16 0,0162 18 0,0338 20
30 0,1862 33 0,1891 33 0,1908 33
31 0,0000 15 0,0000 10 0,0000 12
34 0,0000 14 0,0000 1 0,0000 3
36 0,0127 18 0,0240 21 0,0527 26
37 0,0000 6 0,0000 9 0,0000 2
39 0,0000 7 0,0000 4 0,0000 9
41 0,0000 3 0,0000 8 0,0000 11
42 0,0000 12 0,0000 6 0,0000 5
43 0,0139 20 0,0226 20 0,0343 21
45 0,0000 2 0,0000 7 0,0000 7
46 0,0937 29 0,0960 29 0,0997 29
47 0,0082 17 0,0117 16 0,0123 16
48 0,0307 24 0,0349 24 0,0389 22
49 0,0000 10 0,0000 5 0,0000 8

Table 4.7: Dynamic efficiency scores RCEk (J = 2) under degressive and linear write-off.
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(static) model that ignores such intertemporal durability. At a more general level, these
empirical findings demonstrate the practical relevance of our methodology for regula-
tors: erroneously disregarding intertemporal aspects of firms’ production decisions may
substantially distort the efficiency assessment and, therefore, also the policy conclusions
that are drawn from it.

We see multiple possible extensions. First, we have been considering a multi-output
setting in the current paper but ignored any output interdependencies, mainly to sim-
plify our exposition. In practice, however, interdependencies among outputs often exist
in the form of joint inputs. From this perspective, it seems particularly interesting to
combine our methodology for dynamic production analysis with the (nonparametric)
methodology for multi-output production analysis that was recently developed by Cher-
chye et al. (2013, 2014). This multi-output framework accounts for interdependencies
between different output production processes through jointly used inputs, which are
formally similar in nature to the durable inputs on which we focus in the current paper
(i.e., they capture inter-period interdependencies between production decisions). Com-
bining the two methodologies will further enhance the realistic modeling of production
interdependencies (across outputs as well as time periods).

Next, our cost and technical inefficiency measures can be used to measure producti-
vity by combining it with various productivity measures such as the cost Malmquist index
of Maniadakis and Thanassoulis (2004) or the Malmquist index of Caves et al. (1982),
Bjurek (1996)’s Hicks-Moorsteen index or the Luenberger indicator of Chambers et al.
(1996b), among others. These productivity measures have been proposed in the context
of nonparametric (DEA) analysis of productive efficiency and, therefore, are easily com-
bined with our novel methodology. This combination will lead to richer productivity
analyses because it explicitly accounts for intertemporal production interdependencies
through storable and durable inputs.

Third, the focus of this paper was on efficiency under the assumption of perfect
price foresight: i.e., our efficiency measures are based on solutions of LPs that assume
the evaluated firm correctly predicts the prevailing prices. In practice, this assumption
rarely holds so that inefficiency can, at least partially, be explained by failure of this
assumption. From a regulator perspective, it is therefore useful to consider efficiency
measures allowing for price uncertainty where one considers efficiency under all possi-
ble (realistic) price situations. This would ensure that new regulation schemes by the
regulator are not too harsh or too loose for the individual firms. A good starting point
towards integration in our framework is Kuosmanen and Post (2002).

Finally, Varian (1982) has developed a nonparametric approach to consumer demand
analysis that is formally analogous to the nonparametric approach to production analysis
to which we adhere here. Following this analogy, we may translate the insights develo-
ped in the previous sections towards a consumption setting to obtain a more realistic
modeling of intertemporal aspects of consumer behavior.22 Specifically, our concept of
storable inputs corresponds to the notion of infrequent purchases in a consumption con-

22See, for example Crawford (2010) and Crawford and Polisson (2014) for recent contributions to the
nonparametric analysis of intertemporal consumer behavior.
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text, and durable inputs are similar in spirit to durable consumption goods (for example,
cars, houses, etc.) in a demand setting.

4.A The economic meaning of write-off schemes

In this short section we clarify the economic intuition behind the write-off schemes for
the durable inputs. For a moment, let us rewrite (4.1) by replacing input requirement
sets with production functions:

min
(q1

t ,...,qJ
t )T

t=J

(P1
t ,...,PJ

t )T
t=J

T∑

t=J

t∑

j=t−J+1

pk,jq
t−j+1
j + P

t−j+1
j Qk,j (4.22a)

s.t. Ft





J∑

j=1

q
j
t−j+1,

J∑

j=1

Qk,t−j+1



 ≥ yk,t ∀t = J, . . . , T (4.22b)

The first order conditions with respect to Qk,t, for all t = J, . . . , T , are

J∑

j=1

P
j
k,t −

J∑

j=1

λt+j−1
∂Ft+j−1

∂Qk,t

≥ 0 ⇔ Pk,t −
J∑

j=1

λt+j−1
∂Ft+j−1

∂Qk,t

≥ 0,

which holds with equality if Qk,t > 0. Rearranging shows that, when a durable input
Qk,t is purchased at time t, the discounted market prices reflect the expected marginal
benefits to production of the durable inputs over their entire lifetime, i.e.,

Pk,t =
J∑

j=1

λt+j−1
∂Ft+j−1

∂Qk,t

, (4.23)

which reveals a write-off scheme that defines the valuation of the firm for durable inputs
in terms of their marginal effects on productivity in periods t to t + J − 1. It is as if the
firm invests in this input and writes off this investment for J periods. We capture this
interpretation by (implicit) period-specific prices

P
j
k,t = λj

∂Fj

∂Qk,t

. (4.24)

Intuitively, these period-specific prices attribute part of the cost of the durable inputs
to different periods t in accordance to the inputs’ marginal productivities.





Chapter 5

Peer screening with DEA: evaluating

customer segments of a telecom

operator
“Presenting DEA graphically, due to its multiple variable nature, has proven
difficult and some have argued that this has left decision-makers and mana-
gers at a loss in interpreting the results.”

— Nicole Adler and Adi Raveh1

5.1 Introduction

Management decisions are made keeping certain objectives in mind. These objectives are
multi-dimensional in nature and realizing them all at once can be a complicated matter.
Furthermore, not all objectives have equal priority. For instance, a manager may know
that he could increase a certain output but the effort and resources spend on doing so
can quite possibly outweigh the benefits. Moreover, realizing multiple objectives at once
can require more complicated strategies. Technically, the direction of projection onto
the efficient frontier determines the objectives to focus on. This begs the question how
to choose this direction. This issue has long been neglected in the literature. Often, a
direction vector is chosen radial to the evaluated observation or set to the unit vector
without much justification apart from interpretational convenience. Furthermore, sensi-
tivity of the results to direction vector choice is hardly checked. Peyrache and Daraio
(2012) present empirical tools to assess sensitivity of efficiency measures to the choice of
direction vectors in non-convex technologies.

Recently, some of the literature focused on determining the direction vectors in some
“optimal” way. The interpretation of “optimality” broadly depends on whether price in-
formation is available. A first stream focuses on the case without prices. Some examples
are: Färe et al. (2013) choose the direction vectors that maximize inefficiency conditional
on a direction vector normalization; Hampf and Krüger (2015) extend their approach
to a dynamic setting to calculate the Malmquist-Luenberger productivity index; Daraio

1Adler and Raveh (2008, p.716)

113
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and Simar (2016) endogenously determine the direction vectors by regressing contextual
factors on the angles of the polar coordinates of the inputs and outputs. Although much
can be said in favor of these approaches, an important issue from a management per-
spective is with regard to the intuitive interpretation of these optimal direction vectors.
Lack of intuitive interpretation could preclude widespread usage. A second stream uses
available prices to determine optimal direction vectors. Examples here include: Zof́ıo
et al. (2013) determine direction vectors in the direction of profit-maximizing bench-
marks; Atkinson and Tsionas (2016) estimate firm specific optimal directions consistent
with first-order conditions of cost minimization and profit maximization in a parametric
setting. Unfortunately, as in our empirical application, price data is often absent which
render these methods useless. We refer to Wang et al. (2017) for an extensive literature
review.

We take a different approach here. Liu et al. (2009) and Liu and Lu (2010) proposed
a method to further differentiate among dominating peers using eigenvector centrality.
Their approach consists of computing efficiency scores for all possible combinations of
input and output dimensions, aggregating the corresponding intensity variables and com-
puting the eigenvalue decomposition. This identifies key decision making units (DMUs)
in the DMU network using partial technologies. These partial technologies might not
all be technically sensible. We start from the observation that the choice of direction
vector determines the part of the technology frontier to which inefficient DMUs are pro-
jected. Thus, it also determines the dominating peers against which an inefficient DMU
is benchmarked. Therefore, we modify their method by computing efficiency scores for
different possible direction vectors and use the key DMUs to identify the most interesting
objectives to focus on in subsequent analysis. These objectives are identified through
a comparative analysis of the key DMUs’ characteristics. The rationale being that key
DMUs are the successful DMUs where the others can learn from.

Typically an inefficient DMU has more than one dominating peer. How can we
compare an inefficient DMU against its dominating peers? The second part of this
paper proposes a visualization tool to compare different DMUs on their input-output
mix and scale. The input and output levels of dominating peers are typically visualized
on a radar plot to compare against the input and output levels of the assessed DMU
(e.g., Daraio and Simar (2016)). Although radar plots can be illuminating, they have two
drawbacks: (i) they quickly become overcrowded when there are many input (output)
dimensions and/or when there are many observations; (ii) they do not easily allow for
quickly comparing the input-output mix and scale of various DMUs. We are not aware of
any visualization tool in the literature that allows to quickly compare DMUs in terms of
their input-output mix similarity and scale. Therefore, we propose an easy to calculate
input-output mix similarity and scale visualization tool which solves both drawbacks at
the cost of the ability to compare individual input and output dimensions. The tool is
therefore intended to be used in conjunction with radar plots and enriches the toolbox
of efficiency analysis further to go beyond the conventional analysis.

The empirical application benchmarks customer segments of a large European tele-
com firm using Activity-Based-Costing (ABC) data. This dataset was previously used
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in Cherchye et al. (2017a) to analyze customer segments from a cost perspective using a
multi-output framework. However, they did not analyze dominating peers in detail. We
identify the most interesting output objectives using the modified Liu et al. (2009) and
Liu and Lu (2010) method before analyzing the individual results in more detail. The
proposed visualization tool is used to compare customer segments and their dominating
peers. Our analysis highlights how results change under different direction vectors.

This paper is structured as follows. We start with introducing necessary notation
and the directional distance function. We next describe the data used in the empirical
application. The paper then essentially consists of two distinct parts with a common
empirical application. The first part focuses on our first methodological contribution of
selecting the direction vector using characteristics of key DMUs and applies it to the data.
The second part focuses on the second methodological contribution by introducing our
input-output mix similarity and scale visualization tool and applies it to the previously
obtained results to compare evaluated DMUs and its dominating peers in more detail.
The final section concludes.

5.2 Model

We have controllable inputs XCx and fixed inputs XFx such that X ≡ (XCx , XFx) ∈ R
n
+.

Similarly, there are controllable outputs YCy and fixed outputs YFy such that Y ≡
(YCy , YFy) ∈ R

m
+ . The distinction between fixed and controllable factors here reflects

that fixed factors cannot be easily adjusted in the short term by the firm. Below, these
fixed factors affect peer selection but do not determine the efficiency score itself. The
dataset is S = {(XCx

k , XFx

k , Y
Cy

k , Y
Fy

k )}k=1,...,K . The production possibilities set is then
defined:

Y =
{

(XCx , XFx , YCy , YFy) ∈ R
n+m
+ |(XCx , XFx) can produce (YCy , YFy)

}

.

We assume that this technology is a closed, convex, free disposal of inputs and outputs
production possibilities set. To maintain the dual profit interpretation (cfr. Section 1.4
in Chapter 1), we assume convexity of the technology. We use the directional distance
function (Chambers et al., 1996b) to compute inefficiency for DMU 0:

D(X0, Y0; g) = sup
{

β ∈ R : (XCx

0 − βgCx
x , XFx

0 , Y
Cy

0 + βgCy
y , Y

Fy

0 ) ∈ Y
}

, (5.1)

if (XCx

0 − βgCx
x , XFx

0 , Y
Cy

0 + βg
Cy
y , Y

Fy

0 ) ∈ Y for some β and D(X0, Y0; g) = −∞ other-
wise. Intuitively, the observation (X0, Y0) is projected onto the efficient frontier in the

direction g = (gx, gy) = (gCx
x , 0|Fx|, g

Cy
y , 0|Fy|).

Although the dataset in our empirical application is well-suited, we do not work
with output-specific or subprocess technologies such as in Chapter 2 and Cherchye et al.
(2017a) because this would complicate matters further. In practice, we compute the
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linear program:

max
β0,λ

β0 (5.2a)

K∑

k=1

λ0kXCx

k ≤ XCx
0 − β0gCx

x , (5.2b)

K∑

k=1

λ0kXFx

k ≤ XFx
0 , (5.2c)

K∑

k=1

λ0kY
Cy

k ≥ Y
Cy

0 + β0gCy
y , (5.2d)

K∑

k=1

λ0kY
Fy

k ≥ Y
Fy

0 , (5.2e)

K∑

k=1

λ0k = 1, (5.2f)

with direction vectors gCx
x ∈ R

|Cx|
+ , g

Cy
y ∈ R

|Cy|
+ and intensity variables λ ∈ R

K×K
+ . This

is basically the same linear program as (1.16) with Γ = V RS and the direction vectors
of the fixed inputs/outputs set to zero. We assume variable returns-to-scale as this
provides the tightest inner bound approximation of the data and because we are ignorant
on possible prevailing returns-to-scale. The direction vectors determine the directions
in which to seek reduction (expansion) of inputs (outputs) and are specified by the

empirical analyst. The efficient projection is then (XCx

0 −βgCx
x , XFx

0 , Y
Cy

0 +β0g
Cy
y , Y

Fy

0 ).
The dominating peers of DMU 0 are characterized by:

D0 = {j|λ0j > 0}.

The set D0 contains all comparison partners used in a convex combination to form

a (hypothetical) benchmark DMU
(
∑K

k=1 λ0kXk,
∑K

k=1 λ0kYk

)

. It is possible that D0 is

not uniquely defined. This is the case if some of the dominating peers are only weakly
efficient (i.e., there are non-zero slacks). For simplicity, we assume that D0 is uniquely
determined. We refer to Thrall (1996) for procedures to classify the various types of
DMUs. We are interested in analyzing these individual dominating peers’ characteristics
which together compose the hypothetical benchmark DMU.

Quite often not much discussion is devoted to the exact choice of direction vector and
one often opts for (gCx

x , g
Cy
y ) = (XCx

0 , Y
Cy

0 ) or (gCx
x , g

Cy
y ) = (1|Cx|, 1|Cy |) without much

ado. The results of this benchmarking analysis serves to guide DMUs to become more
profitable and therefore has severe managerial implications. These managerial implica-
tions can range from individual cost cutting on a DMU level to strategic reorientation.
From a managerial perspective it is then curious that the choice of direction often re-
ceives little attention in empirical applications. A first objective of this paper is then
to choose the direction vectors in such a way that they have an intuitive interpretation
from a managerial perspective.
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5.3 Evaluating customer segments of a telecom operator

The empirical application focuses on a benchmark analysis of customer segments for a
large European telecom operator. This operator recently moved from a product centric
to a customer centric strategy where customers rather than products are viewed as
the most important asset. It is in this setting that we analyze the different customer
segments using a panel data over 12 months.

5.3.1 Customer segments

The telecom operator segments its customers based on the product combination the cu-
stomer has, the region in which the customer lives, and the socio-demographic category
to which the customer belongs. The telecom operator offers fixed telephone, mobile
telephone, digital television and internet. Customers can choose any possible combina-
tion of products. The main distinction for the product combination is the number of
products, leading to product combinations, which we will label ‘play packs’, with 4, 3,
2, or 1 product respectively. Other subscriptions that do not fit these play packs are
labeled as 0-play. These are legacy subscriptions which are no longer offered to new
customers, but which are maintained for existing customers. Furthermore, the telecom
operator distinguishes 11 regions and 6 socio-demographic groups. It is important to
only compare customer segments that operate in a similar environment so that the ben-
chmarking results are realistic. For that reason, we only compare customer segments
within a particular play pack. Specifically, we only compare customer segments that
have the same number of products (i.e., 1, 2, 3, or 4) in their play pack. Obviously, as
the telecom operator offers 4 products, there are 4 different combinations for the 3-play
pack, 6 different combinations for the 2-play pack and 4 different combinations for the
1-play pack. Combining the number of combinations within each play pack with the 11
regions and 6 socio-demographic groups leads to 66 customer segments for the 4-play
pack, 264 customer segments for the 3-play pack, 396 customer segments for the 2-play
pack, 264 customer segments for the 1-play pack and 66 customer segments for 0-play.

5.3.2 Data

The telecom operator provides us with data for the year 2014. For each month, we
have detailed data on all costs and all revenues associated with every customer segment.
We also have data on the total number of customers in each segment as well as on the
migration of customers from one customer segment to another customer segment. The
number of customers varied between 2, 646, 952 and 2, 719, 896 over the year.

We subdivide the inputs and outputs as follows:

• Cx = { repair costs, rental costs devices, call center costs, own shops costs, web
costs, commissions, SAC costs, SDC costs }

• Fx = { interconnection, roaming, content, billing, bad debt, IT }
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• Cy = { mobile revenues, fixed access revenues, fixed internet revenues, fixed digital
TV revenues, other revenues}

• Fy = { churn rate, upsells, number of customers }

All these different outputs in Cy and Fy together reflect the current contribution
of a customer segment and the future potential of a customer segment. The current
contribution of a customer segment is reflected by five revenue streams in Cy: fixed access,
mobile, fixed digital television, fixed internet and other revenues. The future potential
of a customer segment is reflected by the churn rate and the number of upsells for each
customer segment (i.e., Fy). The churn rate of a play pack represents the percentage
of customers that cancel their subscription entirely. The number of upsells for every
customer segment is constructed from the monthly migration data and is defined as the
number of existing customers of the telecom operator that change their subscription to
that particular customer segment. The number of customers is in Fy to ensure that the
benchmarked customer segment is only benchmarked against customer segments with
equal or more customers. The fixed outputs Fy are factors not under direct control of the
firm. It can indirectly influence these by, for example, starting a marketing campaign or
doing (temporary) price reductions. Since these would require more extensive customer
behavior modeling we simply assume they are fixed in the short-run. Furthermore, this
partitioning has the effect that all controllable outputs Cy are expressed in monetary
terms.

The inputs in our model are the costs that the telecom operator makes to realize the
outputs. These costs typically consists of controllable (Cx) and fixed (Fx) costs. The
fixed costs Fx are composed of (i) long term factors which are not immediately adjusta-
ble (e.g., content, billing, bad debt and IT) and (ii) truly uncontrollable costs which are
inherently linked to the usage pattern of the customer (e.g., interconnection and roaming
costs). After consulting with the management team of the telecom operator, we decided
to ignore the fixed costs for our analysis as these costs can never be used to realize
profit improvements in the short run. The controllable costs include various operating
expenditures, acquisition costs (SAC), and development costs (SDC). The acquisition
(development) cost for every customer segment is constructed from the monthly migra-
tion data by multiplying the acquisition (development) cost for a particular customer
segment with the number of customers that migrate to that particular customer segment.
In total, we have 14 cost categories that serve as an input in our model.

Table 5.1 presents an overview of the descriptive statistics of the different inputs
and outputs for each customer segment that we include in our model. The descriptive
statistics learn that there is a lot of variation in both the inputs and the outputs across
the different customer segments. On the cost side, repair costs and call center costs are
generally the largest costs for the different play packs. The majority of both costs are
probably labor costs which can be significant. This would explain why both costs account
for a large share of total costs. Furthermore, 0-play has no acquisition or development
costs which demonstrate that the subscription is only maintained for existing customers.
On the revenue side, mobile revenues are on average largest for 4-play, 1-play and 0-play
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while fixed internet is on average largest for 3-play and 2-play. Although not shown
here to conserve space, some revenues are negative for some observations. We follow
Kerstens and Van de Woestyne (2011) to ensure (5.2) also finds profit improvements for
these observations.

4-play 3-play 2-play 1-play 0-play

Input Mean Std Mean Std Mean Std Mean Std Mean Std

Repair costs 454499.29 506769.11 162391.00 307091.52 67038.17 121062.10 78552.40 240117.62 1292.63 1286.11
Rental costs devices 143.31 435.27 68.27 281.72 44.28 185.36 30.44 111.65 11.82 119.46
Call center costs 341731.08 392709.48 99664.88 180986.28 32838.94 56822.25 74216.30 145802.74 4032.03 3430.03
Shops costs 90802.42 104468.34 26351.87 48045.70 7950.84 14812.51 16251.70 34125.03 1089.01 930.04
Web costs 29349.02 33748.44 8493.28 15425.38 2534.66 4817.63 5244.59 11334.93 365.49 314.28
Commissions 32187.31 37880.92 6423.97 9096.37 1811.28 3000.56 9934.00 25645.21 844.17 719.37
SAC CHANNEL 84181.39 132197.61 53732.74 215607.91 15206.82 61934.33 83371.60 268187.65 0.00 0.00
SAC INSTALL 48508.31 76176.96 44440.04 181988.87 18849.24 77574.83 20579.95 91401.23 0.00 0.00
SAC TERMINAL 43939.58 69002.28 39712.93 164955.68 15039.30 69769.69 4148.08 24514.12 0.00 0.00
SAC CCA BACK OFFICE 9518.34 14947.51 8175.63 34831.72 2501.36 10691.17 2211.08 7725.90 0.00 0.00
SDC CHANNEL 197355.11 183100.06 32953.60 40251.84 7628.21 11691.40 1496.62 3466.20 0.00 0.00
SDC INSTALL 105024.60 88256.50 28910.82 36839.06 10537.02 18080.53 2113.03 8069.98 0.00 0.00
SDC TERMINAL 90139.03 75916.81 22959.44 32025.80 6450.71 15284.73 520.11 2204.44 0.00 0.00
SDC CCA BACK OFFICE 18854.18 15833.80 4141.30 6092.69 898.36 1493.36 165.50 665.20 0.00 0.00

Output Mean Std Mean Std Mean Std Mean Std Mean Std

Mobile revenues 1609028.16 1932590.72 211823.12 336505.18 49896.88 128735.41 915997.39 2417011.43 35109.44 27414.26
Fixed access revenues 1294707.19 1497576.23 463405.67 1019595.33 205638.11 470249.40 482764.07 1794354.21 3676.24 3428.55
Fixed internet revenues 1485713.15 1703256.65 592675.31 1147821.29 225368.95 491208.91 94561.38 300294.55 4188.88 4301.56
Fixed TV revenues 1119748.99 1282514.40 394958.02 809351.93 111568.24 309895.42 3400.10 5195.58 10101.49 12169.81
Other revenues 21045.20 25447.77 3693.96 6200.80 685.34 1358.57 1133.67 2469.05 412.51 570.50
Churn rate -0.03 0.00 -0.06 0.04 -0.09 0.09 -0.22 0.10 -0.49 0.00
Upsells 59741.65 68229.48 24126.11 45126.88 12371.78 21999.89 60341.74 120496.68 6058.38 6008.06
Number of customers 60993.89 68906.95 24991.31 46034.43 12821.23 22390.94 61963.66 122203.20 6647.06 6132.40

Table 5.1: Summary statistics of controllable costs and revenues per play pack.

The efficiency scores are computed on a monthly basis by comparing each customer
segment with all similar customer segments in all periods (i.e., we assume no change in
technology over time). While this is a strong assumption, the advantage of this approach
is that we have much more observations to compare with. Specifically, we have 792 peers
for the 4-play packs, 3166 peers for the 3-play packs, 4489 peers for the 2-play packs,
3052 peers for the 1-play pack and 792 peers for the 0-play pack. We focus here on the
efficiency results for the month December.

We define the set of dominating peers for customer segment 0 by:

D0 = {j|λ0j > 0.001} .

This leaves out the dominating peers that have only a marginal contribution in
forming the hypothetical benchmark used in (5.2). All controllable inputs and outputs
are expressed in monetary terms, such that output improvements and input reductions
have the interpretation of a change in profit:

∆Profit ≡ β0

(

gCy
y 1′

|Cy | + gCx
x 1′

|Cx|

)

. (5.3)

The common factor β0 in (5.2) is the greatest common factor with which we can
reduce controllable inputs and expand controllable outputs. Hence, it is limited by the
factor with the smallest room for improvement and the choice of direction can make a
substantial difference on the results. The first task is then to fix these direction vectors.
To keep the exposition simple, we focus on identifying important output objectives.
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5.4 Identifying important objectives from key DMUs

The underlying rationale of our proposal is that one can learn a lot about important ob-
jectives from efficient DMUs. Through a comparative analysis of these efficient DMUs’
characteristics one can distill important information. For example: if all output objecti-
ves are monetary then one can compute the output shares of every controllable output
(i.e., Y i/

∑

∀i∈Cy
Y i) and determine which output most frequently has the largest output

share. One could then infer that the most successful DMUs focus more on this particular
output and that inefficient DMUs should also focus on improving this output. The same
reasoning applies for controllable inputs.

Whether a DMU is efficient requires, of course, a choice of direction vector and this
is exactly what we want to determine in the first place. One approach is to solve (5.2) for
many different choices of direction vector and keep track of the efficient DMUs through
λ. However, not all efficient DMUs are equally interesting: some are highly specialized
while others are all-round efficient. Thus, we need a way of identifying one from the
other. This is where the proposal of Liu et al. (2009) and Liu and Lu (2010) to identify
key DMUs comes in.

5.4.1 Liu et al.(2009)’s method

We can interpret λ as describing a weighted graph: the rows/columns (DMUs) represent
different vertices while every entry λij > 0 represents a weighted edge from DMU i
to DMU j. Counting the number of incoming vertices reveals the importance of a
dominating DMU in the network. However, this only reveals the “all-round” dominating
DMUs that perform well on all inputs and outputs, but does not reveal the “highly
specialized” dominating DMUs which are only referenced by a small number of other
DMUs. To further discriminate among these different types of dominating DMUs, Liu
et al. (2009) proposed to calculate Shephard distance functions under a VRS technology
for all (2n − 1) × (2m − 1) possible input-output specifications and then summing the
intensity variables:

Ω =

(2n−1)×(2m−1)
∑

t=1

λt
ij ,

where λt represents the intensity variables for specification t. In this way the merits of
every DMU under various situations are considered: the “highly specialized” dominating
DMUs are referenced more and with more weight for highly specialized specifications,
while “all-round” dominating DMUs are more referenced in the all inputs – all outputs
specification. They then use the eigenvector centrality concept of social network analysis
in DEA. This allows for ranking of the DMUs in terms of importance in the network.
Assume that the vector of rank scores I ∈ R

K measures the importance of every DMU in
the network. The basic idea of eigenvector centrality is to determine this Ij for DMU j
such that the score is a weighted sum of the referencing DMUs’ rank scores and weighted
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by the link weights Ωij:

cIj =
K∑

i=1

ΩijIi,

where c is some constant. In matrix notation this gives:

cI = Ω′I.

It turns out that c is an eigenvalue and I the corresponding eigenvector. Although
there are K solutions to this system of equations, the largest eigenvalue and correspon-
ding eigenvector summarize most of the variation and are therefore retained. Key DMUs
are then those with an eigenvector centrality score larger than zero. All-round DMUs k
have the largest eigenvector centrality score cIk while highly specialized DMUs have the
lowest eigenvector centrality scores (larger than zero).

5.4.2 Our proposal

An important point to note is that Liu et al. (2009) effectively use all possible “partial
technologies” by generating all possible input-output specifications (i.e., every input
and output is left out in more than one specification t). One could doubt whether
these partial technologies are sensible, because these partial technologies might describe
physically impossible true technologies.2 Instead of modifying the technology in the
different specifications and in light of our earlier discussion regarding identification of
important objectives from efficient DMUs, we propose to vary the direction vectors over
the different specifications t. The choice of direction vector obviously selects the part
of the technology frontier to which inefficient DMUs are projected and thus influences
which dominating DMUs appear as peers in λt. Varying the direction vector can then
also identify all-round efficient DMUs and highly specialized efficient DMUs.

In a follow-up paper Liu and Lu (2010) propose a different aggregation which remo-
ves the bias due to scale differences among DMUs. We integrate their modification in
Algorithm 1 which further only differs from theirs in that the specifications are generated
by varying the direction vectors.

Once the key DMUs are identified one can do a comparative analysis of the most
important key DMUs (i.e., those k with largest cIk score). As mentioned earlier, in the
empirical application we propose to compare the output shares of these key DMUs and
select the output whose output share is most frequently largest. This simple comparative
analysis selects one output objective to be radially expanded. This keeps the intuition
simple and yields a clear message from a management perspective. Of course, nothing
prevents us from selecting multiple outputs instead of only one. Naturally, the same
strategy can be used on the cost side.

2To be fair, Liu et al. (2009) do not advocate one particular way of generating the specifications t
and simply note that this is one possibility.
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Algorithm 1 Identification of key DMUs.

1. Solve (5.2) with (gCx
t,x , g

Cy

t,y ) = gt for all specifications t and collect λt.

2. Normalize the intensity variables for every evaluated DMU 0 as follows. First
compute input weights

IW i
j =

λt
0jXi

j
∑

j∈D0
λt

0jXi
j

∀i = 1, . . . , n,

and output weights

OW r
j =

λt
0jY

r
j

∑

j∈D0
λt

0jY r
j

∀r = 1, . . . , m.

We have 0 ≤ IW i
j , OW r

j ≤ 1. Next, combine these input and output weights
∀j ∈ D0:

IOW t
0j =

1

n + m

(
n∑

i=1

IW i
j +

m∑

r=1

OW r
j

)

.

3. Construct the adjacency matrix Ω ∈ R
K×K
+ of the network with elements:

Ω0j =
∑

t

IOW t
0j.

4. Solve cI = Ω′I using eigenvalue decomposition. The largest eigenvalue and corre-
sponding eigenvector correspond to c and I respectively.

5.4.3 Empirical application

What can the key customer segments in the network reveal about key

strategic objectives?

We apply Algorithm 1 to compute eigenvector centrality cI for the direction vector
choices:3

•
(

gCx
x , g

Cy
y

)

=
(

|XCx

0 |, |YCy

0 |
)

;

3Naturally, this specification of direction vectors is not exhaustive. There is the open question
whether there exists a set of direction vectors such that adding any other direction vector to this set
does not add any new key DMU. A positive answer to this question would ensure that we do not miss
any key DMUs when identifying them through Algorithm 1. This is an interesting avenue for future
research.
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• ∀p ∈ Cy :
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, ep|YCy

0 |
)

with ep = (0, . . . , 0
︸ ︷︷ ︸

p−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

m−p

) ∈ R
m
+ .

The first choice is a common choice in the literature which seeks radial improvements
in both controllable outputs and controllable inputs. The other choices represent quite
extreme managerial views in terms of important output objectives by subsequently giving
each controllable output objective complete priority. From a management perspective
it gives an idea of how focusing on every output separately affects profitability ceteris
paribus. We use the absolute values of the observations in the direction vectors to ensure
that (5.2) always finds profit improvements even when an observation contains negative
values (Kerstens and Van de Woestyne, 2011).

We favor these direction vector choices, because they have simple managerial interpre-
tations. Expanding only one output objective at a time yields the most straightforward
managerial implications. These become harder to interpret when one focuses on more
than one output objective at a time. However, a possible disadvantage is that none of
the above direction vector choices result in a translation invariant directional distance
function. The reason is that these direction vectors depend on the data sample itself: a
translation of the data sample causes a translation of the direction vector and in turn
affects the computed β0 in (5.2) (Aparicio et al., 2016). An alternative way of choosing
among direction vector candidates is through the properties of the directional distance
function such as the translation invariance property. For example: a translation invari-

ant alternative would be to work with variations of
(

gCx
x , g

Cy
y

)

=
(

1|Cx|, ep1|Cy|

)

and

divide all inputs and outputs by their respective sample mean.

The computed eigenvector centrality then reveals which customer segments are the
key customer segments in the network and how they are linked. We can then draw the
network of key customer segments as suggested by Liu et al. (2009). Figure 5.1 shows
the top 10 key dominating DMUs in the network in terms of their eigenvector centrality
cI and their links to the other key DMUs in this top 10. We limit this network to 10
as displaying more customer segments would quickly clutter the figures. Recall that
all-round weakly efficient DMUs have the largest eigenvector centrality score as they
more frequently act as dominating peers compared to highly specialized weakly efficient
DMUs. We observe that the key DMUs of 4-play have much smaller eigenvector centrality
scores than the key DMUs of the other play packs. However, we cannot compare these
scores over different play packs as these scores are derived from the largest eigenvalue of
different adjacency matrices Ω. Moreover,

∑K
k=1 cIk differs quite substantially over the

play packs: from 0.16 for 4-play to 18.74 for 2-play. Next, these graphs have a directed
edge from a key DMU i to j if Ωij > 0. At first glance, one immediately notices that
many of these edges are bidirectional. This might seem odd at first, but is explained by
the fact that every edge Ωij is the aggregation result of 6 individual λij for 6 different
direction vector choices. Five of these direction vector choices favor extremely specialized
customer segments as they only seek output improvements along one dimension at a time.
Therefore, all-round weakly efficient DMUs will be inefficient for at least one of these
direction vector choices. This explains why there are many bidirectional edges in these
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graphs.
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Figure 5.1: Network of top 10 DMUs according to their eigenvector centrality (in brac-
kets). Higher is better.

Figure 5.2 shows histograms of the eigenvector centrality scores for every play pack.
Only a limited minority of customer segments has an eigenvector centrality larger than
zero. Hence, we can limit the analysis to only a number of key DMUs to determine impor-
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tant output objectives. We use these identified key customer segments to determine the
important strategic output objectives. The key customer segments are the “successful”
ones from which one can learn to improve the other customer segments. For example:
determining which monetary outputs have the largest share in their total revenues can
be an indication to focus on improving these particular outputs across the board. More
concretely, we do:

1. Sort cIk ∀k = 1, . . . , K in descending order. Choose α ∈ [0, 1] and solve

d = arg min
d∈[1,K]

d s.t.

∑d
k=1 cIk

∑K
k=1 cIk

≥ α.

We use α = 0.75.

2. Sort the output shares
Y i

k∑

∀i∈Cy
Y i

k

∀i ∈ Cy in descending order for all k = 1, . . . , d.

3. Count the number of times every output i ∈ Cy has the largest output share over
all k = 1, . . . , d.

4. Set g
Cy
y = (0, . . . , Y i

0 , . . . , 0) for output i ∈ Cy which most frequently has the largest
output share.

Thus, we rank the 5 monetary outputs in terms of output share for the largest
customer segments whose cumulative share of eigenvector centrality represents 75% of
the total eigenvector centrality. Figure 5.3a shows histograms per play pack. These
are constructed by computing, for every observation, the share of every output in total
outputs and sorting these shares in descending order. We then count how many times
every output appears in the ranking. This gives an idea which output objectives are most
important for key dominating customer segments. Hence, they can give an indication of
the most important output objectives to focus on. In addition, Figure 5.3b shows radar
plots of the controllable output shares for these key DMUs. This gives an indication of
how the output shares are distributed among the different outputs. It thus complements
Figure 5.3a by telling us something about the relative size of the different outputs.
Furthermore, Figure 5.3b shows that the key DMUs for all play packs (except 4-play) are
(highly) specialized customer segments mostly focusing on a few outputs. The minimal
output shares range from 0 to 1 over these play packs. 4-play is the exception here:
every output but “other revenues” represents a significant share in the total output.
The output shares vary between 0.14 to 0.37 for 4-play.

Overall, we find that mobile revenues and fixed internet revenues most frequently
represent the largest share of total output. Following these conclusions, we next fo-

cus the analysis on two choices of direction vectors:
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, |YCy

0 |
)

and
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, e1|YCy

0 |
)

where e1 selects mobile revenues only. This final choice

is very much in line with the developments in the industry which experiences year-on-
year increases in mobile data usage and services. A summary of results for other choices
of direction vector is in Appendix 5.A.
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Figure 5.2: Histogram of eigenvector centrality scores cI for every play pack.

Main results

We compute (5.2) with
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, |YCy

0 |
)

. This common choice seeks radial

improvements in both controllable outputs and controllable inputs. We also redo the

analysis with
(

gCx
x , g

Cy
y

)

=
(

|XCx

0 |, e1|YCy

0 |
)

which seeks radial improvements in both

mobile revenues and controllable inputs. Thus, it leaves the other outputs unchanged.
We discuss the main results for both these direction vector choices together, because the
pattern is the same.

Figures 5.4a-5.4b show the frequency of the inefficiency scores per play pack. For
every play pack there are many efficient DMUs. The 4-play pack has the lowest in-
efficiency scores while 0-play has the highest. The proportion of inefficient customer
segments in 0-play is largest. Overall a large number of DMUs are efficient. Figu-
res 5.5a-5.5b show histograms of the potential change in profit per play pack. Contrary
to what one might expect from looking at β, these figures show that quite some money
is left on the table for individual play packs: the potential change in profit can go up to
approximately 58000 EUR and 35000 EUR in 4-play depending on the direction vectors
choice. Potential change in profit is far lower in 0-play than in the other play packs.
However, this is not surprising since 0-play customer segments yield far lower revenues
than the other play packs (cfr. Table 5.1).
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Figure 5.3: Characteristics of controllable outputs’ shares for key DMUs representing
75% of total eigenvector centrality.
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Figure 5.4: Histograms of β0 over all customer segments.
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Figure 5.5: Histograms of ∆Profit over all customer segments.
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Table 5.2 shows summary statistics on potential profit improvements per play pack
category. It also shows the average potential profit improvement per customer in the last
column. These average potential profit improvements per customer can be significant:
from as little as 0.41 EUR (0.26 EUR) in the 4-play up to 2.58 EUR (2.63 EUR) in the 2-

play category for
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, |YCy

0 |
)

(
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, e1|YCy

0 |
)

respecti-

vely). Furthermore, within different play packs there is a lot of variation in ∆Profit. Not
surprisingly, the largest profit improvements are found in 4-play and the lowest in 0-play.
Curiously, 1-play has larger potential profit improvements than 2-play and even larger

than 3-play in some cases. We find the same pattern for
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, e1|YCy

0 |
)

.

A first takeaway is then that there is quite a lot of room for improvement across all play
packs.

(

gCx
x , g

Cy
y

)

=
(

|XCx

0 |, |YCy

0 |
)

Play pack Mean Std. Min Max Mean EUR/customer

4-play 3502.77 11528.26 -0.01 57692.16 0.41
3-play 600.04 1789.14 -0.01 13010.77 1.89
2-play 386.58 941.88 -0.00 7104.92 2.58
1-play 417.54 2264.94 -0.01 25547.35 0.77
0-play 184.35 237.03 -0.00 947.40 0.47

(

gCx
x , g

Cy
y

)

=
(

|XCx

0 |, e1|YCy

0 |
)

Play pack Mean Std. Min Max Mean EUR/customer

4-play 2303.87 7704.09 -0.00 35120.06 0.26
3-play 440.96 1338.57 -0.00 10210.32 1.93
2-play 231.66 548.24 -0.00 3352.36 2.63
1-play 419.34 2279.72 -0.01 25496.78 0.79
0-play 172.07 226.08 -0.00 996.44 0.42

Table 5.2: Summary statistics of potential profit improvements per play pack.

We next look at the number of dominating peers (i.e., |D0|) of every inefficient
customer segment. Figures 5.6a-5.6b show the frequency of the number of peers for
every customer segment. For all plays (except 0-play) a majority of customer segments
has 1 dominating peer while for the minority that does have more than one dominating
peer, the number can amount to 20 dominating peers. For 0-play a majority of customer
segments has more than one dominating peer. Fortunately, the number of customer
segments with many dominating peers is relatively small such that it should still be
doable to look into each of these separately. However, this requires much more knowledge
of the actual firm operations so that it can only be done by the firm itself.

Individual results

The next step is to delve a bit deeper into these aggregate results and examine more
closely the individual observations for every play pack. Improving every single customer
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Figure 5.6: Histogram of |D0| over all inefficient customer segments 0.
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segment might not be worthwhile from a cost-benefit perspective and can be time consu-
ming. Therefore, we look into the top 5 of largest potential profit improvements per play

pack in Table 5.3 for
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, |YCy

0 |
)

. This table also lists the percentage

of ∆Profit the top 5 represents for every play pack. A large proportion of ∆Profit is
concentrated in the top 5 for both 4-play (89.81%) and 1-play (66.9%) which should
simplify the subsequent analysis to implement these improvements. For the other play
packs the gains are much more diversified over a larger number of customer segments.
Strikingly, socio segments E and B appear very often in the different top 5.

Next, we look at the top 5 of largest potential profit improvements per play pack

in Table 5.4 for
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, e1|YCy

0 |
)

. This top 5 once again represents the

majority of profit improvements for 4-play (90.26%) and 1-play (66.68%). The potential
gains are distributed over much more customer segments for the other play packs. The
entire top 5 of 4-play is from socio segment E while the entire top 5 of 0-play is from
socio segment B. For the other play packs there is less of a pattern. We further notice
that for 4-play, 1-play and 0-play the entire top 5 contains the same customer segments
than in Table 5.3. Moreover, for 1-play and 0-play the order is even the same.

The frequency of socio segment E and B in these top 5 would suggest that inefficiency
is much more systematic for certain socio demographic groups than for others. Only
the firm itself can look into this pattern for explanations. One possibility is that this
inefficiency is intentional by the firm as a way, for example, to bind certain demographic
groups now to its services with the intention to monetize on their customer loyalty later
on.

Now that we know the performance of the different customer segments and the po-
tential profit improvements, the next step in the analysis is to learn how these customer
segments can improve their performance. This can be done for every inefficient customer
segment by looking at the characteristics of its dominating peers. This also allows ma-
nagement to determine a course of action and differentiate between feasible dominating
peers and infeasible dominating peers. Management can then try to bring the inefficient
customer segment more in line with the feasible dominating peers by taking appropriate
action. The second goal of this paper is to propose a visualization tool that allows to
compare input-output mix and scale of each DMU with its dominating peers (or other
inefficient DMUs).

5.5 Visualization of input-output mix similarity and scale

of DMUs

When the direction vectors are determined we can move on to the actual analysis of
individual DMUs. For an individual DMU there are typically many different dominating
peers that one needs to analyze by comparing their input and output mix with the
benchmarked DMU. We next present a visualization tool that allows to compare input-
output mix similarity and scale of DMUs.
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4-play

Total profit improvement = 231182.82 EUR, top 5 = 89.81%

∆Profit Socio segment Province

57692.16 E 9
50189.33 E 6
44235.23 E 1
28700.25 E 10
26800.67 E 8

3-play

Total profit improvement = 158411.22 EUR, top 5 = 30.14%

∆Profit Socio segment Province

13010.77 E 6
9706.64 E 8
9587.96 E 6
7999.61 E 9
7442.99 B 4

2-play

Total profit improvement = 143033.71 EUR, top 5 = 20.52%

∆Profit Socio segment Province

7104.92 E 1
7018.49 B 5
6368.99 C 5
4808.93 C 2
4043.11 B 10

1-play

Total profit improvement = 105638.07 EUR, top 5 = 66.90%

∆Profit Socio segment Province

25547.35 E 6
16530.73 E 7
14384.66 E 8
8992.04 G 11
5217.68 G 1

0-play

Total profit improvement = 12167.00 EUR, top 5 = 32.30%

∆Profit Socio segment Province

947.40 B 2
827.99 B 1
760.57 B 4
704.49 B 5
689.12 B 9

Table 5.3: Top 5 of largest potential profit improvements per play pack for
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, |YCy

0 |
)

.
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4-play

Total profit improvement = 152055.62 EUR, top 5 = 90.26%

∆Profit Socio segment Province

35120.06 E 6
34506.51 E 1
34140.39 E 9
19985.83 E 8
13485.56 E 10

3-play

Total profit improvement = 116412.36 EUR, top 5 = 31.57%

∆Profit Socio segment Province

10210.32 E 6
7385.23 B 4
7384.35 E 8
5968.32 G 11
5803.91 H 1

2-play

Total profit improvement = 85947.09 EUR, top 5 = 17.37%

∆Profit Socio segment Province

3352.36 E 1
3023.85 B 5
2996.31 A 8
2948.56 C 2
2608.02 A 3

1-play

Total profit improvement = 106093.33 EUR, top 5 = 66.68%

∆Profit Socio segment Province

25496.78 E 6
16481.92 E 7
14616.64 E 8
8949.41 G 11
5193.40 G 1

0-play

Total profit improvement = 11356.32 EUR, top 5 = 32.79%

∆Profit Socio segment Province

996.44 B 2
768.32 B 1
679.66 B 4
657.66 B 5
622.22 B 9

Table 5.4: Top 5 of largest potential profit improvements per play pack for
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, e1|YCy

0 |
)

.
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5.5.1 Input-output mix similarity and scale plot

Consider the numerical example in Table 5.5 with 2 inputs – 2 outputs of 5 hypothetical
DMUs. DMU A is a generalist one while B and C are highly specialized DMUs. DMU D
is the least performing DMU and is more specialized with a focus on producing Y1 using
input X1. DMU E is a generalist who divides his attention equally over both outputs
and producing efficiently. In this stylized example it is easy to compare the 5 DMUs in
terms of their efficiency and input-output mix. The input-output mix here refers to the
proportions in which inputs and outputs are used.

DMU X1 X2 Y1 Y2

A 2 2 1 1
B 2 0 1 0
C 0 1 0 2
D 0.75 0.25 0.75 0.25
E 0.75 0.75 0.75 0.75

Table 5.5: Numerical example illustrating radar plot and input-output mix similarity.

When analyzing the results of the efficiency computation we often are interested in
comparing the input-output mix of various DMUs. In particular, we might be interested
to compare the input-output mix of the dominating peers for a benchmarked DMU. The
“radar plot” (or “spider plot”) is a visualization tool which can be used for this purpose
(Daraio and Simar, 2016). In brief, one assigns different angles ∀i = 1, . . . , v:

ρi =
(i − 1) · 2π

v − 1

to the v input (output) dimensions on a circle and then one plots the (normalized) input
(output) vector A = (A1, . . . , Av) with coordinates

(Ai cos ρi, Ai sin ρi),

∀i = 1, . . . , v on the circle. This allows to quickly compare different DMUs along their
input (output) dimensions.

However, there are two drawbacks to this visualization. First, if there are many
input (output) dimensions and/or DMUs to compare then the plot quickly becomes
overcrowded. Second, it is difficult to compare the exact input (output) mix of the
various DMUs. The reason is simply that the angles ρi are always uniformly distributed
over the entire circle and do not depend on A itself.

Figure 5.7 shows a radar plot for the 5 DMUs of our numerical example. This radar
plot allows to compare the different input and output dimensions separately over all
DMUs. While the number of dimensions is limited for this numerical example, it should
be clear to the reader that adding a few more dimensions would quickly clutter the
graph. Furthermore, it is not straightforward to compare the DMUs in terms of their
input-output mix. From Table 5.5 one can see that the input-output mix of DMU E is
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the same as that of DMU A: both use inputs in the same proportion to produce outputs
in the same proportion. In contrast, the radar plot does not convey this information.
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Y
1
 = 

 0.00 ...  1.00

Y
2
 = 
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Figure 5.7: Radar plot for 2 inputs - 2 outputs numerical example.

We propose an alternative visualization tool which solves both problems. The draw-
back is that one looses the ability to compare the individual input (output) dimensions
across DMUs. Therefore, this tool can be used in conjunction with the radar plot. In
particular, assume that we compare two input (output) vectors A and B where A is the
base (e.g., the input (output) vector of the benchmarked DMU) and B is some other
input (output) vector (e.g., of a dominating peer). We compare (i) their input (output)
mix using a similarity criterion and (ii) we also compare their similarity in scale. Both
similarity criteria parametrize a 2-dimensional point in polar coordinates. For (i) we use
the cosine similarity criteria which only compares the “orientation” of both vectors while
ignoring their size. To measure (ii) we simply use the ratio of the 2-norm of both vectors.
Summarizing, we define a two-dimensional “similarity” point (r, θ) in polar coordinates:

θ = arccos (cosine similarity) = arccos
A · B

‖A‖2‖B‖2
, (5.4a)

r =
‖B‖2

‖A‖2
, (5.4b)

where · is the dot product, θ ∈ [0, π] is the angle and r ∈ R+ is the radius. The arccos
function is used to retrieve the corresponding angle. A larger θ indicates that A and B

are very dissimilar in terms of their input (output) mix.4 The radius measures similarity

4An alternative is to follow Blancard et al. (2016) and use the Hamming distance to measure diffe-
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in scale: r > (<)1 indicates that B is much larger (smaller) than A. Naturally, r = 1
indicates equal scale.

An intuitive property of this parametrization is that a rescaled input (output) only
differs in scale from the original input (output). This is shown as follows: assume A = X0

and B = (1− β0)X0. Obviously, their mix is equal but their scale is different. The polar
coordinates computed using (5.4) reflect this:

θ = arccos
X0 · (1 − β0)X0

‖X0‖2‖(1 − β0)X0‖2
= arccos

(1 − β0)‖X0‖2
2

(1 − β0)‖X0‖2
2

= 0,

r =
(1 − β0)‖X0‖2

2

‖X0‖2
2

= 1 − β0.

This is what one would expect. In contrast, this property breaks down when com-
paring an efficient projection B = [(1 − β0)X0, (1 + β0)Y0] of an observation with the
original observation A = [X0, Y0] itself. Here, [·] denotes vector concatenation and using
(5.4) yields

θ = arccos
[X0, Y0] · [(1 − β0)X0, (1 + β0)Y0]

‖[X0, Y0]‖2‖[(1 − β0)X0, (1 + β0)Y0]‖2

= arccos
[(1 − β0)‖X0‖2

2, (1 + β0)‖Y0‖2
2]

‖[X0, Y0]‖2‖[(1 − β0)X0, (1 + β0)Y0]‖2
6= 0,

r =
‖[(1 − β0)X0, (1 + β0)Y0]‖2

‖(X0, Y0)‖2
.

The efficient radial projection B by definition retains the same input-output mix as
its original observation A, but this is not reflected in the computed θ. In order to retain
this property we propose to compute (5.4) separately for the inputs and the outputs
before combining them as follows:

θ =
1

2
{θX + θY } (5.5a)

=
1

2

{

arccos

(

X0 · Xj

‖X0‖2‖Xj‖2

)

+ arccos

(

Y0 · Yj

‖Y0‖2‖Yj‖2

)}

,

r =
rY

rX
(5.5b)

=
‖Yj‖2

‖Y0‖2
· ‖X0‖2

‖Xj‖2
.

rences in input and output mix. The range of the Hamming distance is [0, 1] where 0 means complete
input (output) mix similarity. The arcsin function then retrieves the corresponding angle.
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Now, comparing B = [(1−β0)X0, (1+β0)Y0] with A = [X0, Y0] yields the similarity

point (r, θ) =
(

1+β
1−β

, 0
)

as expected. Note that we always find r ≥ 1 when comparing

dominating peers with the benchmarked DMU.
We compare the input-output mix similarity of DMU B, C, D and E with respect to

A in Table 5.6 and Figure 5.8. Looking at the data we make the following observations:
the inputs and outputs of E are used in the same proportions as A, but at lower levels.
Thus, E dominates A in the inputs (rX =

√
2 · 0.752/2

√
2 ≈ 0.38 < 1), but is being

dominated by A in outputs (rY =
√

2 · 0.752/
√

2 = 0.75 < 1). However, it dominates A
more in inputs than A dominates E in outputs. This is reflected in angle 0 and scale 2.
Next, B and C are similar in that they are highly specialized DMUs. The difference here
is that C clearly dominates A in both inputs and outputs while B does not dominate A.
The 45◦ angle for both reflects their difference in mix compared to A. The radius of 1.0
shows that B operates at equal scale with A while the radius of 4.0 of C reflects that it
dominates in both inputs and outputs. Finally, D has a more similar input-output mix
to A than B and C, but operates at larger scale (r = 2). The larger scale is because
D dominates A more in inputs (rX =

√
0.752 + 0.252/2

√
2 ≈ 0.28 < 1) than it is being

dominated by A in outputs (rY =
√

0.752 + 0.252/
√

2 ≈ 0.56 < 1). Both characteristics
are reflected in its radius and angle.

DMU r θ (in rad)

A 1.00 0.00
B 1.00 0.79 (≈ 45.00◦)
C 4.00 0.79 (≈ 45.00◦)
D 2.00 0.4636 (≈ 26.57◦)
E 2.00 0.00

Table 5.6: Input-output mix similarity of DMU B,C,D and E with respect to A of the
numerical example.

In the empirical application we set A = (X0, Y0) and B = (Xj , Yj) for all j ∈ D0.
The resulting points (rj , θj) for all j ∈ D0 are then visualized on a half circle. Together
with the aforementioned radar plots this allows to compare the different dominating
peers.

5.5.2 Empirical application

We can then compare the inputs and outputs for each of these customer segments with
their individual benchmarks (i.e., ∀j ∈ D0). Figure 5.9a uses radar plots to compare
the different outputs of the most inefficient customer segment (4-play, socio segment E,

province 9) with its target outputs ((1+β0)Y
Cy

0 ) and its 6 benchmark customer segments

for
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, |YCy

0 |
)

. The output levels are relative to the output levels of

the benchmarked customer segment in order to give them a percentage interpretation.
Figure 5.9b shows similar radar plot for all inputs relative to the input levels of the
benchmarked customer segment. Figure 5.10a shows the input-output mix similarity and
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C: (r,θ) = (4.00,0.79)
D: (r,θ) = (2.00,0.46)
E: (r,θ) = (2.00,0.00)
B: (r,θ) = (1.00,0.79)

Figure 5.8: Input-output mix similarity plot for 2 inputs - 2 outputs numerical example.

scale plot (computed as in (5.5)) of this customer segment, its efficient projection and all
of its dominating peers. This figure reveals some interesting information concerning the
dominating peers. The dominating peers can be subdivided into three clusters according
to their input-output mix similarity: (i) 5830, 5812, 5902 and 6244 (r ∈ [1.00, 1.21],
θ ∈ [0.05, 0.11]), (ii) 5813 (r = 1.53, θ = 0.24) and (iii) 6261 (r = 1.39, θ = 0.45). The
customer segments in the first cluster are all rather similar to DMU 0. In contrast, DMU
5813 and 6261 are much more dissimilar than DMU 0. Looking back at Figures 5.9a-5.9b
this is clearly visible: 6261 has a very different input-output mix from DMU 0 while 5813
has an identical output mix and a slightly different input mix.

As a following example we consider customer segment 1-play, socio segment E, pro-

vince 6. This is the most inefficient customer segment within 1-play for
(

gCx
x , g

Cy
y

)

=
(

|XCx

0 |, |YCy

0 |
)

. Figures 5.11a-5.11b show the radar plots of all outputs and inputs while

Figure 5.10b shows the input-output mix similarity and scale plot. A first glance at
Figure 5.10b immediately reveals that there are now three different clusters of peers ac-
cording to their mix similarity: (i) 11497, 10777, 11425, 11349, 10835 (r ∈ [0.93, 2.89], θ ∈
[0.01, 0.06]) (ii) 10776 (r = 4.06, θ = 0.34) and (iii) 10990 (r = 0.21, θ = 0.65). Customer
segment 10990 has a completely different input mix (Figure 5.11b) than DMU 0: 10990
uses large quantities of X6 and X7 whereas DMU 0 does not use these inputs. Customer
segment 10990 also uses far less of the other inputs while generating far lower revenues
than DMU 0. Output 5 (Y5) is the exception: customer segment 10990 produces 7.08
times more of this output than DMU 0 (Figure 5.11a). Customer segment 10990 is then
a highly specialized customer segment. This is also indicated by its radius of 0.21 and its
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(a) Radar plot of all outputs. Output levels are relative to current output levels.
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(b) Radar plot of all inputs. Input levels are relative to current input levels.

Figure 5.9: Radar plot of all inputs and outputs for customer segment 4-Play, socio
segment E, province 9. From left to right and top to bottom we have benchmark DMU
5812, 5813, 5830, 5902, 6244 and 6261. The radar plot shows the current, target and
benchmark input and output levels.
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Figure 5.10: Input-output mix similarity and scale plot for selected customer segment

with
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, |YCy

0 |
)

. The input-output mix similarity and scale of the

dominating peers is computed relative to DMU 0.
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angle 0.65 on Figure 5.10b. We see a similar pattern for customer segment 10776: both
the input and output mix in Figure 5.11a-5.11b are very different compared to DMU 0.
In contrast to 10990 it does operate at a much larger scale than DMU 0. Within the first
cluster of similar customer segments DMU 11349 and 10835 operate at the larger scale.
The input-output mix of the other DMUs 11425 and 10777 is only slightly different than
DMU 11349 while their scale is much smaller. Finally, the input-output mix similarity
of DMU 11497 equals that of DMU 10777 but its scale is smaller and lower than that of
DMU 0. Both radar plots confirm this.

Therefore, it seems there are 3 options for DMU 0: (i) drastically change it input-
output mix in line with 10990 at a possible cost of a reduction in scale; (ii) change its
input-output mix and increase its scale in line with 10776; or (iii) increase its scale in
line with 10835 or 11349 and only minor modifications to the input-output mix. The
firm should look into these clusters to determine the more feasible input-output mix.

We again look at the most inefficient customer segment (4-play, socio segment E,

province 6) for
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, e1|YCy

0 |
)

. To conserve space, we only consider the

input-output mix similarity and scale plot in Figure 5.12a. This customer segment has
10 dominating peers. Here we see a lot of variation in both input-output mix similarity
and scale such that we cannot distinguish different clusters as before. The most similar
customer segment is 5830 (r = 1.12, θ = 0.05) operating at a larger scale while the most
dissimilar customer segment is 5763 (r = 1.55, θ = 0.44). Between these extremes we
find the other dominating peers. It seems that the more DMU 0 changes its input-output
mix the more it could increase its scale. In the end it is up to the firm to look into these
different dominating peers to decide which of them is the most feasible peer to learn
from. Finally, we consider the input-output mix similarity and scale plot of customer
segment 1-play, socio segment E, province 6 in Figure 5.12b. This plot is completely

the same as Figure 5.10b with
(

gCx
x , g

Cy
y

)

=
(

|XCx

0 |, |YCy

0 |
)

so we will not repeat the

discussion here.

5.5.3 Alternative definition of dominating peers

Recall the definition of D0 as the set of peers used to form a convex combination of the
hypothetical benchmark DMU. As already briefly mentioned, there is a genuine concern
that not all these peers are truly dominating in a mathematical sense. Thus, one might
question whether the previous analysis of comparing individual dominating peers makes
sense. Moreover, one might expect that peers dominating in a mathematical sense are
also more similar to DMU 0. We investigate this by modifying the definition of D0. We
modify this definition to

D∗
0 = {j|Xj ≤ X0, Yj ≥ Y0} .

It turns out that almost no customer segment dominates any of the evaluated custo-
mer segments (i.e., we almost always have D0 = {0}). Therefore, we weaken the above
dominance criteria by only requiring the peers to dominate on the controllable dimensi-

ons we seek to improve. First, let C̃x =
{

j ∈ Cx|gj
x > 0

}

and C̃y =
{

j ∈ Cy|gj
y > 0

}

be
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(a) Radar plot of all outputs. Output levels are relative to current output levels.
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(b) Radar plot of all inputs. Input levels are relative to current input levels.

Figure 5.11: Radar plot of all inputs and outputs for customer segment 1-Play, socio
segment E, province 6. From left to right and top to bottom we have benchmark DMU
10776, 10777, 10835, 10990, 11349, 11425 and 11497. The radar plot shows the current,
target and benchmark input and output levels.
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5681: (r,θ) = (1.61,0.27)
5763: (r,θ) = (1.55,0.44)
6191: (r,θ) = (1.38,0.30)
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5762: (r,θ) = (1.35,0.19)
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5830: (r,θ) = (1.12,0.05)
Target: (r,θ) = (1.06,0.04)
5902: (r,θ) = (1.03,0.08)

(a) 4-play, socio segment E, province 6 (DMU 0).
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 10776: (r,θ) = (4.06,0.34)
10835: (r,θ) = (2.89,0.06)
11349: (r,θ) = (1.67,0.03)
11425: (r,θ) = (1.19,0.02)
10777: (r,θ) = (1.06,0.01)
Target: (r,θ) = (1.03,0.00)
11497: (r,θ) = (0.93,0.01)
10990: (r,θ) = (0.21,0.65)

(b) 1-play, socio segment E, province 6 (DMU 0).

Figure 5.12: Input-output mix similarity and scale plot for selected customer segment

with
(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, e1|YCy

0 |
)

. The input-output mix similarity and scale of the

dominating peers is computed relative to DMU 0.
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the set of controllable inputs and outputs for which we seek improvements. Now we can
define the dominating set:

D̃0 =

{

j|XC̃x

j ≤ XC̃x
0 , Y

C̃y

j ≥ Y
C̃y

0

}

. (5.6)

Note that (5.6) corresponds with D∗
0 for

(

gCx
x , g

Cy
y

)

=
(

|XCx
0 |, |YCy

0 |
)

. For the most

inefficient customer segment per play pack in Table 5.4 we compare (r, θ) computed for
all peers in D0 and D̃0. Summary statistics are reported in Table 5.7 for (r, θ). The
number of peers in D̃0 is smaller than the number of peers in D0 for 3/5 cases and
is generally small. The exception is D̃0 for customer segment 2-play, socio segment E,
province 1 which has 511 peers. The peers in D̃0 are on average more similar and larger
in scale than those in D0 in 3/5 cases. The standard deviation column shows that there
is also less variation in input-output mix similarity θ for peers in D̃0 for all cases, but not
in scale. Finally, the mean (r, θ) of D0 and the mean (r, θ) of D̃0 are always within two
standard deviations of each other which seems to indicate that the difference is probably
not statistically significant.5

mean (r, θ) std. (r, θ)

4-play, socio segment E,
province 6

|D0| = 10 (1.32, 0.18) (0.21, 0.13)

|D̃0| = 8 (1.63, 0.21) (0.27, 0.09)

3-play, socio segment E,
province 6

|D0| = 7 (1.21, 0.41) (0.71, 0.40)

|D̃0| = 1 (1.00, 0.00) (0.00, 0.00)

2-play, socio segment E,
province 1

|D0| = 12 (1.28, 0.22) (0.48, 0.34)

|D̃0| = 511 (1.97, 1.05) (0.60, 0.18)

1-play, socio segment E,
province 6

|D0| = 7 (1.63, 0.14) (1.25, 0.23)

|D̃0| = 2 (1.06, 0.01) (0.08, 0.01)

0-play, socio segment B,
province 2

|D0| = 7 (1.84, 0.24) (0.84, 0.18)

|D̃0| = 19 (1.87, 0.22) (0.34, 0.06)

Table 5.7: Comparison of input-output mix similarity and scale of D0 and D̃0 for
(gCx

x , g
Cy
y ) = (|XCx

0 |, e1|YCy

0 |).

5.6 Conclusions

Efficiency analysis can guide management in their (strategic) decisions to improve the
firm’s performance. Management decisions are made keeping certain multi-dimensional
objectives in mind. Furthermore, not all objectives have equal priority and realizing

5We test whether the distributions of (r, θ) for D0 and D̃0 are equal (i.e., H0 : FD0
(·) = FD̃0

(·)) using
the nonparametric test of Li et al. (2009). This test uses kernel density estimates of the distributions to
compute the test statistic. We reject the H0 hypothesis in 4/5 cases. However, we question the outcomes
of the test given that the power of the test is expected to be small in this case due to the small sample
size in each of the 5 cases.
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multiple objectives at once can require more complicated strategies. The direction of
projection determines the objectives to focus on. Thus, the choice of these direction
vectors is important. Surprisingly, empirical applications in efficiency analysis usually
choose the direction vectors onto the efficient frontier without much ado. Recently,
the literature has proposed some ways of determining these direction vectors in some
optimal way. Although much can be said in favor of these approaches, an important issue
from a management perspective is with regard to the intuitive interpretation of these
optimal direction vectors. Lack of intuitive interpretation could preclude widespread
usage. This paper takes a different approach. Liu et al. (2009) and Liu and Lu (2010)
propose a method to further differentiate among dominating peers and identify key
DMUs using eigenvector centrality. We start from the observation that the choice of
direction vector determines the part of the technology frontier to which inefficient DMUs
are projected. Thus, it also determines the dominating peers with which an inefficient
DMU is benchmarked. Therefore, we modify their method by computing efficiency
scores for different possible direction vectors and use the key DMUs to identify the most
interesting objectives to focus on in subsequent analysis. These objectives are identified
through a comparative analysis of the key DMUs’ characteristics. The rationale being
that key DMUs are the successful DMUs where the others can learn from.

After calculating efficiency scores, the next stage consists of looking into the domina-
ting peers to determine the feasibility of the proposed benchmark. One way is to use ra-
dar plots of the inputs and outputs to compare the different dominating peers. Although
radar plots can be illuminating, they have two drawbacks: (i) they quickly become over-
crowded when there are many input (output) dimensions and/or when there are many
observations; (ii) they do not easily allow for quickly comparing the input-output mix
of various DMUs. We propose an input-output mix similarity and scale visualization
tool which solves both drawbacks at the cost of the ability to compare individual input
(output) dimensions. The tool is therefore intended to be used in conjunction with radar
plots.

The empirical application benchmarked customer segments of a large European te-
lecom firm using Activity-Based-Costing (ABC) data. Our preliminary analysis reveals
that both mobile and fixed internet revenues are important output objectives. We then
focus the main analysis on radial direction vectors with (i) all controllable inputs and
outputs and (ii) all controllable inputs and mobile revenues only. This analysis learns
that there is a lot of heterogeneity in inefficiency over the different customer segments.
Although the level of inefficiency can be small, the associated potential profit impro-
vements can be considerable. We next examined the individual results in more detail.
We found that the number of dominating peers varied between 1 − 20. Looking at the
most inefficient customer segments of every play pack we found that socio segment E
and B prevalently appear in these top 5. Only the firm can explain this pattern, but it
could be intentional inefficiency by the firm as a way to tie certain demographic groups
now to its services with the intention to monetize on their customer loyalty later on.
Visualization of the input-output mix and scale of the dominating peers for selected cu-
stomer segments using the newly proposed visualization tool revealed different courses
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of action for the firm to remove the present inefficiencies. We demonstrated how this
new visualization tool in conjunction with radar plots enriches the toolbox of efficiency
analysis to go a step beyond the conventional analysis.

We see a number of opportunities for future research. First of all, our proposed
way of selecting objectives is limited to objectives with the same units of measurement.
Future work could consider alternative ways of selecting these objectives when units of
measurement are different. Second, it can be important to consider the direction vectors
of earlier periods when choosing direction vectors. This would make the choice of di-
rection vector an intertemporal problem where one accounts for the history of direction
vector choices. This intertemporal dependence can be important as ignoring it could
lead to conflicting management conclusions. Third, valuable information can be found
in tracking the evolution of dominating peers over time. Visualization tools that present
these temporal changes can aid decision makers. The proposed input-output mix simi-
larity and scale visualization plot might be extended to show these temporal changes.
Finally, extending the peer screening to models with output-specific technologies such
as those of Cherchye et al. (2013, 2016) presents methodological challenges of its own.
These arise from the fact that each output-specific technology has its own set of domina-
ting peers. The main challenge is then to reconcile the individual results obtained from
peer screening the dominating set of every output.
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5.A Other choice of direction vectors

This section highlights how the efficiency results change with alternative choices for the
direction vectors. To focus our discussion, we concentrate on 5 individual DMUs for
every play pack. The first column of Table 5.8 lists the 5 individual DMUs of every play
pack that leave the most money on the table in absolute terms. These are the same
customer segments we discussed earlier in Table 5.3. The table also lists the potential
change in profit of these DMUs relative to current profit as well as the individual β. The
other columns show the same results for these DMUs but for other choices of direction
vector. This allows to closely investigate the effect of a particular choice of direction
vector on individual DMUs.

Focusing solely on mobile revenues, the company could realize similar, sometimes
larger, profit improvements in many of these customer segments than when focusing on
all output objectives simultaneously (i.e., column 2 versus column 1). This holds for all
types of play packs. Thus, mobile represents an important source of future potential
growth in profits. We next discuss some conclusions for each play pack separately.

For the 4-play customer segments similar potential profit improvements are realizable
when focusing exclusively on the fixed access objective compared to focusing on the
mobile objective. We note that none of these alternative direction vector choices yield
similar potential profit improvements compared to focusing on all input and output
objectives. There is not a clear single output objective which merits exclusive focus for
the 3-play customer segments. Here it is advisable to focus on all output objectives
simultaneously (column 1). In the 2-play customer segment focusing exclusively on
profit improvements for fixed digital TV (column 5) generally leads to larger profit
improvements than focusing exclusively on any of the other output objectives. To a
lesser extent this is also true for the fixed internet objective (column 4). It is much more
worthwhile to focus exclusively on mobile in the 1-play and 0-play customer segments as
this delivers much larger gains in terms of profit. In terms of inefficiency scores, focusing
exclusively on the other output objectives (column 3-6) leads to larger inefficiency scores
than focusing exclusively on mobile output (column 2). This suggest that there is more
room for improvement in those output objectives in relative terms but that mobile is a
larger source of revenue. This is also clearly visible by the relative potential change in
profit (denoted in brackets).

Table 5.9 lists D0 for the same DMUs in the first column. One notices that every
DMU has 6 − 12 dominating DMUs with λ0s > 0.001. The other columns show the
dominating peers of these DMUs for the different choices of direction vector. This gives
a better idea of the individual strengths of particular dominating peers and can provide
important information for managers.
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(gCx
x , g

Cy
y ) = (|XCx

0 |, |YCy

0 |) (gCx
x , g

Cy
y ) = (|XCx

0 |, Mobile) (gCx
x , g

Cy
y ) = (|XCx

0 |, Fixed access) (gCx
x , g

Cy
y ) = (|XCx

0 |, Fixed internet) (gCx
x , g

Cy
y ) = (|XCx

0 |, Fixed TV) (gCx
x , g

Cy
y ) = (|XCx

0 |, Other)

4-play

Rank β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit

1 0.0362 57692.2 0.04513 34140.4 0.04983 31355.4 0.03708 25292.1 0.04983 28671.1 0.04912 17542.6
(0.1211) (0.07166) (0.06581) (0.05308) (0.06018) (0.03682)

2 0.0602 50189.3 0.08827 35120.1 0.07897 27017.7 0.06458 23328.2 0.09822 29688.7 0.09789 19233.9
(0.2137) (0.1495) (0.115) (0.09932) (0.1264) (0.08189)

3 0.0251 44235.2 0.04213 34506.5 0.05017 33964.6 0.02698 19678 0.04999 29704 0.05017 17956
(0.07168) (0.05591) (0.05504) (0.03189) (0.04813) (0.0291)

4 0.01651 28700.3 0.01657 13485.6 0.02066 13478.6 0.02066 14198.5 0.02066 11682.8 0.02056 6864.76
(0.04354) (0.02046) (0.02045) (0.02154) (0.01772) (0.01041)

5 0.02056 26800.7 0.03287 19985.8 0.0309 15575.2 0.02327 12274.4 0.03982 16809.1 0.03953 10215
(0.05416) (0.04039) (0.03147) (0.0248) (0.03397) (0.02064)

3-play

Rank β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit

1 0.07169 13010.8 0.1006 10210.3 0.2126 8403.59 0.12 10453.9 0.1676 11653.2 0.2126 8276.55
(0.2484) (0.1949) (0.1604) (0.1996) (0.2224) (0.158)

2 0.04355 9706.64 0.05922 7384.35 0.1101 5160.82 0.05423 5788.51 0.1099 9066.46 0.1101 5103.76
(0.1356) (0.1031) (0.07209) (0.08086) (0.1266) (0.07129)

3 0.02122 9587.96 0.02304 2071.53 0.02182 4767.31 0.02233 5160.45 0.02304 3950.45 0.02272 1997.2
(0.04621) (0.009985) (0.02298) (0.02487) (0.01904) (0.009626)

4 0.008944 7999.61 0.01062 2016.94 0.01066 4601.38 0.01066 4935.01 0.01061 3748.26 0.008944 1651.27
(0.02044) (0.005153) (0.01176) (0.01261) (0.009577) (0.004219)

5 0.03082 7442.99 0.05535 7385.23 0.08004 4041.66 0.03664 4309.97 0.07905 6856.29 0.08004 4023.56
(0.09136) (0.09065) (0.04961) (0.0529) (0.08415) (0.04939)

2-play

Rank β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit

1 0.02687 7104.92 0.05211 3352.36 0.05375 3482.68 0.02774 5171.93 0.04987 6683.1 0.05253 3277.05
(0.07672) (0.0362) (0.03761) (0.05585) (0.07216) (0.03538)

2 0.03013 7018.49 0.05237 3023.85 0.05454 3197.25 0.03284 5421.09 0.04906 5748.53 0.05446 3017.31
(0.08675) (0.03738) (0.03952) (0.06701) (0.07105) (0.03729)

3 0.02251 6368.99 0.02528 1996.01 0.02258 4736.69 0.02528 1983.25 0.02528 3803.05 0.02519 1971.26
(0.1015) (0.03182) (0.07551) (0.03162) (0.06063) (0.03142)

4 0.02135 4808.93 0.04379 2948.56 0.02152 3664.44 0.04442 2977.64 0.04442 5390.24 0.04442 2972.79
(0.1146) (0.07027) (0.08733) (0.07096) (0.1285) (0.07084)

5 0.02334 4043.11 0.03142 1275.3 0.03263 1318.73 0.02381 2929.73 0.03263 2800.51 0.03263 1272.07
(0.06427) (0.02027) (0.02096) (0.04657) (0.04452) (0.02022)

1-play

Rank β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit

1 0.02994 25547.3 0.02994 25496.8 0.05232 5781.87 0.05232 5782.86 0.05232 5773.43 0.05232 5751.05
(0.08823) (0.08806) (0.01997) (0.01997) (0.01994) (0.01986)

2 0.05823 16530.7 0.05823 16481.9 0.06681 1799.32 0.06681 1791.7 0.06681 1784.49 0.06681 1779.87
(0.1091) (0.1088) (0.01188) (0.01183) (0.01178) (0.01175)

3 0.02254 14384.7 0.02304 14616.6 0.03344 2240.32 0.03344 2232.14 0.03359 2219 0.03359 2209.48
(0.04561) (0.04635) (0.007104) (0.007078) (0.007037) (0.007006)

4 0.03555 8992.04 0.03555 8949.41 0.04308 1237.21 0.04308 1231.48 0.04308 1227.93 0.04308 1228.22
(0.05624) (0.05597) (0.007738) (0.007702) (0.00768) (0.007682)

5 0.01541 5217.68 0.01541 5193.4 0.01747 648.253 0.01747 650.845 0.01739 642.924 0.01747 640.104
(0.02425) (0.02414) (0.003013) (0.003025) (0.002989) (0.002976)

0-play

Rank β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit β ∆ Profit

1 0.1009 947.403 0.131 996.443 0.1176 299.674 0.1244 310.774 0.1419 353.145 0.1419 275.755
(0.1281) (0.1347) (0.04051) (0.04201) (0.04774) (0.03728)

2 0.1076 827.986 0.1161 768.319 0.1656 276.309 0.1719 284.697 0.1781 296.704 0.1781 232.307
(0.1296) (0.1202) (0.04324) (0.04455) (0.04643) (0.03635)

3 0.1278 760.566 0.1283 679.658 0.1798 207.654 0.1798 196.234 0.1798 219.894 0.1788 173.66
(0.1486) (0.1328) (0.04058) (0.03835) (0.04297) (0.03394)

4 0.1544 704.489 0.1596 657.659 0.1788 182.839 0.1788 176.696 0.1788 176.352 0.1755 170.333
(0.1845) (0.1722) (0.04787) (0.04626) (0.04617) (0.0446)

5 0.1741 689.124 0.1761 622.219 0.2317 209.588 0.2358 188.965 0.2358 210.283 0.234 177.217
(0.2132) (0.1925) (0.06485) (0.05847) (0.06506) (0.05483)

Table 5.8: Worst 5 DMUs per play pack in terms of ∆Profit for
(

gCx
x , g

Cy
y

)

=
(

|XCx

0 |, |YCy

0 |
)

(first column). For every choice

of direction vectors the table shows β and ∆Profit for the same 5 DMUs as in the first column. Relative ∆Profit with respect
to current profit is in brackets.
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0 |, |YCy

0 |) (gCx
x , g

Cy
y ) = (|XCx

0 |, Mobile) (gCx
x , g

Cy
y ) = (|XCx

0 |, Fixed access) (gCx
x , g

Cy
y ) = (|XCx

0 |, Fixed internet) (gCx
x , g

Cy
y ) = (|XCx

0 |, Fixed TV) (gCx
x , g

Cy
y ) = (|XCx

0 |, Other)

4-play

Rank D0 D0 D0 D0 D0 D0

1 5812, 5813, 5830, 5902, 6244, 6261, 5762, 5763, 5764, 5812, 5837, 5902, 5763, 5812, 5823, 5902, 6191, 6244, 5811, 5812, 5902, 6191, 6244, 6261, 5763, 5812, 5823, 5902, 6191, 6244, 5763, 5812, 5823, 5902, 6191, 6244,
6191, 6244,

2 5666, 5672, 5684, 5811, 5813, 5830, 5681, 5684, 5762, 5763, 5812, 5830, 5684, 5762, 5811, 5902, 5980, 6028, 5609, 5654, 5672, 5684, 5811, 5813, 5684, 5762, 5763, 5764, 5811, 5812, 5666, 5684, 5762, 5763, 5811, 5902,
5903, 6244, 6261, 5902, 5903, 6191, 6244, 6191, 6197, 6244, 5903, 6244, 5902, 6191, 6244, 5903, 6191, 6244,

3 5654, 5681, 5686, 5812, 5823, 5902, 5620, 5654, 5681, 5686, 5764, 5812, 5654, 5681, 5686, 5764, 5812, 5902, 5654, 5681, 5686, 5811, 5812, 5823, 5654, 5656, 5681, 5686, 5764, 5812, 5654, 5681, 5686, 5764, 5812, 5902,
6261, 5902, 6261, 6261, 5902, 6261, 5902, 6261, 6261,

4 5644, 5680, 5681, 5686, 5794, 5812, 5644, 5680, 5681, 5686, 5794, 5812, 5680, 5681, 5686, 5794, 5812, 5902, 5680, 5681, 5686, 5794, 5812, 5902, 5680, 5681, 5686, 5794, 5812, 5902, 5680, 5681, 5686, 5794, 5812, 5902,
5902, 6244, 6261, 5902, 6244, 6261, 6244, 6261, 6244, 6261, 6244, 6261, 6244, 6261,

5 5620, 5666, 5681, 5685, 5686, 5757, 5618, 5620, 5621, 5666, 5681, 5686, 5618, 5620, 5668, 5681, 5685, 5686, 5620, 5666, 5681, 5685, 5686, 5757, 5618, 5620, 5621, 5666, 5681, 5685, 5618, 5620, 5621, 5666, 5681, 5685,
5812, 5830, 6244, 5757, 5764, 5812, 6244, 5812, 6028, 6244, 5812, 5830, 6244, 5686, 5757, 5764, 5812, 6244, 5686, 5757, 5764, 5812, 6244,

3-play

Rank D0 D0 D0 D0 D0 D0

1 1669, 1706, 1710, 2000, 5421, 6446, 1642, 1669, 1706, 1715, 1854, 6464, 1634, 1706, 1853, 4756, 6412, 6446, 1649, 1706, 1854, 2000, 5481, 6446, 1634, 1706, 1853, 4756, 6412, 7954, 1634, 1706, 1853, 4756, 6412, 6446,
6464, 8459, 8459, 6467, 7942, 7973, 6467, 7942,

2 1706, 1852, 1854, 1862, 5482, 6607, 1706, 1708, 1718, 1792, 1852, 1854, 1706, 1718, 1852, 1854, 1862, 2097, 1706, 1718, 1852, 1854, 1862, 5194, 1706, 1718, 1850, 1852, 1854, 1862, 1706, 1718, 1852, 1854, 1862, 2097,
1924, 2097, 6446, 6556, 6465, 6556, 6970, 6980, 6465, 6556, 6970, 6465, 6556, 6970,

3 4830, 4964, 5039, 5109, 5188, 5253, 4828, 4830, 5039, 5109, 5111, 5181, 4828, 4830, 4964, 5039, 5109, 5111, 4830, 4893, 5039, 5109, 5254, 5476, 4828, 4830, 5039, 5109, 5111, 5181, 4828, 4830, 5039, 5109, 5111, 5181,
5254, 5476, 8129, 5188, 5254, 5405, 5476, 5188, 5254, 5476, 6914, 8129, 5188, 5254, 5405, 5476, 5188, 5254, 5405, 5476,

4 4882, 4894, 4978, 5038, 5109, 5111, 4882, 4894, 4978, 5038, 5109, 5111, 4882, 4894, 4978, 5038, 5109, 5111, 4882, 4894, 4978, 5038, 5109, 5111, 4882, 4894, 4978, 5038, 5109, 5111, 4882, 4894, 4978, 5038, 5109, 5111,
5254, 5476, 5254, 5476, 5254, 5476, 5254, 5476, 5254, 5476, 5254, 5476,

5 1706, 1718, 1854, 1862, 5194, 6411, 1706, 1718, 1852, 1854, 1862, 6464, 1718, 1854, 1862, 5194, 6411, 6464, 1718, 1854, 1862, 5194, 6411, 6446, 1706, 1718, 1854, 1862, 5194, 6411, 1718, 1854, 1862, 5194, 6411, 6464,
6446, 6464, 6980, 6465, 6556, 6465, 6556, 6464, 6980, 6446, 6465, 6980, 6465, 6556,

2-play

Rank D0 D0 D0 D0 D0 D0

1 914, 916, 929, 932, 934, 1491, 914, 916, 929, 932, 934, 1060, 914, 916, 929, 932, 934, 1060, 914, 916, 929, 932, 934, 1077, 914, 916, 929, 932, 934, 1060, 914, 916, 929, 932, 934, 1060,
4473, 1072, 1073, 1150, 1491, 4160, 4689, 1077, 1491, 4160, 4473, 4689, 1491, 4473, 1072, 1073, 1491, 4160, 4689, 1072, 1491, 4160, 4689, 4690,

2 914, 932, 1013, 1060, 1061, 1292, 914, 932, 1013, 1060, 1372, 1502, 914, 932, 1013, 1060, 1372, 1502, 914, 932, 1013, 1060, 1061, 1077, 914, 932, 1013, 1060, 1372, 1502, 914, 932, 1013, 1060, 1372, 1502,
1490, 1502, 4160, 4689, 4690, 1514, 1565, 4547, 4689, 1514, 1565, 4160, 4547, 4689, 1292, 1502, 4160, 4689, 4690, 1514, 4547, 4689, 1514, 1565, 4547, 4689,

3 1233, 3073, 3991, 4114, 7412, 7526, 1233, 3073, 3991, 4114, 7412, 7526, 1233, 3073, 3991, 4114, 7412, 7526, 1233, 3073, 3991, 4114, 7412, 7526, 1233, 3073, 3991, 4114, 7412, 7526, 1233, 3073, 3991, 4114, 7412, 7526,
7634, 7706, 8935, 10694, 7706, 7916, 8935, 10694, 7634, 7706, 8935, 10694, 7706, 7916, 8935, 10694, 7706, 7916, 8935, 10694, 7706, 7916, 8935, 10694,

4 1233, 4114, 7155, 7412, 7418, 7634, 1233, 4114, 7155, 7412, 7418, 7634, 1233, 4114, 7155, 7412, 7418, 7634, 1233, 4114, 7155, 7412, 7418, 7634, 1233, 4114, 7155, 7412, 7418, 7634, 1233, 4114, 7155, 7412, 7418, 7634,
7742, 7844, 9358, 7742, 7844, 9358, 7742, 7844, 9358, 7742, 7844, 8935, 9358, 7742, 7844, 8935, 9358, 7742, 7844, 8935, 9358,

5 932, 934, 1292, 1366, 1502, 4617, 932, 1077, 1490, 1502, 1565, 4547, 932, 1077, 1292, 1490, 1502, 4547, 932, 934, 1061, 1292, 1366, 1502, 932, 1077, 1292, 1490, 1502, 4547, 932, 1077, 1292, 1490, 1502, 4547,
4689, 4617, 4689,

1-play

Rank D0 D0 D0 D0 D0 D0

1 10776, 10777, 10835, 10990, 11349, 11425, 10776, 10777, 10835, 10990, 11349, 11425, 10777, 10847, 10849, 10990, 10992, 11349, 10777, 10847, 10849, 10990, 10992, 11349, 10777, 10847, 10849, 10990, 10992, 11349, 10777, 10847, 10849, 10990, 10992, 11349,
11497, 11497, 11425, 11425, 11425, 11425,

2 212, 10829, 10835, 10847, 11200, 11349, 212, 10829, 10835, 10847, 11200, 11349, 212, 10829, 10835, 10840, 10847, 10848, 212, 10829, 10835, 10840, 10847, 10848, 212, 10829, 10835, 10840, 10847, 10848, 212, 10829, 10835, 10840, 10847, 10848,
11355, 11415, 11424, 11355, 11415, 11424, 11349, 11355, 11349, 11355, 11349, 11355, 11349, 11355,

3 10775, 10776, 10829, 10835, 10840, 10847, 10775, 10776, 10829, 10835, 10840, 10847, 10829, 10835, 10840, 10843, 10847, 10849, 10829, 10835, 10840, 10843, 10847, 10849, 10829, 10835, 10840, 10843, 10847, 10849, 10829, 10835, 10840, 10843, 10847, 10849,
10849, 10981, 10984, 11424, 10849, 10981, 10984, 11424, 10981, 10992, 11424, 10981, 10992, 11424, 10981, 10992, 11424, 10981, 10992, 11424,

4 3198, 10775, 10776, 10779, 10829, 10835, 3198, 10775, 10776, 10779, 10829, 10835, 10757, 10775, 10779, 10840, 10847, 10848, 10757, 10775, 10779, 10840, 10847, 10848, 10757, 10775, 10779, 10840, 10847, 10848, 10757, 10775, 10779, 10840, 10847, 10848,
10847, 10848, 11200, 11202, 11355, 11424, 10847, 10848, 11200, 11202, 11355, 11424, 11343, 11349, 11355, 11424, 11343, 11349, 11355, 11424, 11343, 11349, 11355, 11424, 11343, 11349, 11355, 11424,

5 362, 10775, 10829, 10835, 10840, 10848, 362, 10775, 10829, 10835, 10840, 10848, 11, 10775, 10835, 10840, 10841, 10847, 11, 10775, 10835, 10840, 10841, 10847, 11, 10775, 10835, 10840, 10841, 10848, 11, 10775, 10835, 10840, 10841, 10847,
10994, 11355, 11424, 10994, 11355, 11424, 10848, 11349, 11355, 11424, 10848, 11349, 11355, 11424, 11349, 11355, 11424, 10848, 11349, 11355, 11424,

0-play

Rank D0 D0 D0 D0 D0 D0

1 11569, 11573, 11767, 11773, 11801, 11945, 11569, 11773, 11945, 12132, 12199, 12211, 11653, 11767, 11773, 11945, 12078, 12199, 11573, 11767, 11773, 11801, 11851, 11945, 11569, 11767, 11773, 11801, 11945, 12199, 11569, 11767, 11773, 11801, 11945, 12199,
12078, 12199, 12283, 12199, 12211, 12211,

2 11570, 11624, 11725, 12095, 12115, 12132, 11570, 11624, 11725, 12095, 12115, 12132, 11570, 11624, 11796, 12095, 12115, 12132, 11570, 11624, 11796, 12095, 12115, 12132, 11570, 11624, 11796, 12095, 12115, 12132, 11570, 11624, 11796, 12095, 12115, 12132,
12146, 12199, 12205, 12146, 12199, 12205, 12199, 12205, 12211, 12199, 12205, 12211, 12199, 12205, 12211, 12199, 12205, 12211,

3 11539, 11563, 11569, 11598, 11624, 12115, 11539, 11563, 11569, 11598, 11624, 12115, 11539, 11563, 11569, 11598, 11624, 12199, 11539, 11563, 11569, 11598, 11624, 12199, 11539, 11563, 11569, 11598, 11624, 12199, 11539, 11563, 11569, 11598, 11624, 12199,
12136, 12199, 12136, 12199, 12211, 12283, 12211, 12283, 12211, 12283, 12211, 12283,

4 11598, 11600, 11624, 11846, 11917, 12103, 11552, 11598, 11600, 11624, 11846, 11917, 11600, 11624, 11705, 11893, 11917, 12055, 11600, 11624, 11705, 11893, 11917, 12055, 11600, 11624, 11705, 11893, 11917, 12055, 11600, 11624, 11705, 11893, 11917, 12055,
12283, 12103, 12283, 12283, 12283, 12283, 12283,

5 11558, 11570, 11624, 11744, 11756, 11888, 11570, 11624, 11756, 11846, 11888, 11911, 11570, 11624, 11911, 11940, 11941, 11943, 11570, 11624, 11911, 11943, 12073, 12136, 11570, 11624, 11911, 11943, 12073, 12136, 11570, 11624, 11911, 11943, 12073, 12136,
11911, 11943, 12211, 11943, 12206, 12211, 12073, 12211, 12211, 12211, 12211,

Table 5.9: D0 of the worst 5 DMUs per play pack in terms of potential change in profit for
(
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(first column). For every choice of direction vectors the table shows dominating peers for the same 5 DMUs.



General conclusions

The aim of this thesis has been to go beyond black box modeling in production theory.
This was done by enhancing the realism of the black box model itself and by provi-
ding some tools to analyze the driving factors behind efficiency and productivity results.
Furthermore, we went beyond conventional efficiency analysis by analyzing what one can
learn from dominating peers and offering a visualization tool in the process. Let us now
reflect on our contributions and discuss some of the limitations before discussing some
future avenues for research.

Contributions and limitations

Chapter 2 modeled mixed farms using network DEA and introduced a coordination
productivity measure which measures potential gains in productivity due to reallocation
of resources from one activity to the other. In addition, we decomposed this coordination
productivity into a coordination technical change component and a coordination techni-
cal inefficiency change component which allows to assess the impacts of reallocation on
the different sources of productivity. The empirical application focused on a large panel
of English and Welsh farms over the period 2007–2013. The results showed that coor-
dination inefficiency significantly increases with the proportion of resources allocated to
livestock production in economic and statistical terms. Coordination inefficient farms
should generally allocate more land to crop production. Depending on the region, the
average coordination productivity growth ranges from −9.7% to 15.9% per year. It is
driven by coordination technical change rather than coordination inefficiency change.

We see three main limitations to our work. First, we assumed perfect substitutability
between crop land and livestock land. By combining current data with new data sources
on land characteristics, future work could relax this assumption of perfect land substi-
tutability and account for the fact that not all land is equally suited for both farming
activities. Second, we did not really account for stochastic factors that impact agricul-
tural production. Weather conditions can significantly impact farm production so that
efficiency is biased upwards (downwards) as a result of good (bad) weather conditions.
We partly accounted for this by running our nonparametric models per region. Third,
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we did not model intertemporal linkages between crop and livestock activities because
of data limitations. One obvious intertemporal link is manure, a by-product of livestock,
which is used as fertilizer in crop farming in a subsequent period. Recently, the Farm
Business Survey started to include data on manure so that over time one could repeat
the analysis with manure data.

Chapter 3 provided a decomposition of the Luenberger-Hicks-Moorsteen total factor
productivity indicator into components of technical change, technical inefficiency change
and scale inefficiency change. The decomposition requires only mild conditions on the
underlying technology. This makes it applicable to a wide range of production technolo-
gies. The Luenberger-Hicks-Moorsteen total factor productivity indicator is additively
complete: output contributions to TFP can be disentangled from input contributions
to TFP. The empirical application focused on the agricultural sector at the state-level
in the U.S. over the period 1960 − 2004. In line with the literature we found that TFP
increased substantially over the considered period and that technical change is the main
driver of TFP, but that the importance of the technical inefficiency change and the scale
inefficiency change components depends on the convexity assumption of the production
technology. We also found that TFP growth is mostly due to output growth rather than
input decline: the agricultural sector was able to produce more with the same amount
of resources.

There are a number of limitations to our work. First, we did not account for pos-
sible intertemporal linkages in the modeling of technology in the empirical application.
Capital and land are prime examples of “durable” inputs (see Chapter 4) which link
production in subsequent periods. Accounting for this in modeling of the technology
likely affects the TFP results and its decomposition. Second, the residual approach in
defining the scale inefficiency change component differs from the conventional CRS-VRS
approach. The accuracy of this residual approach depends on the “step-size”, while the
CRS-VRS approach uses a (hypothetical) CRS benchmark susceptible to a few (extreme)
observations. The first question pertains to the definition of the scale inefficiency change
component: can one use the CRS-VRS approach instead of the residual approach and,
if so, what is the interpretation of the remaining component? Next, it is of practical
interest to determine the conditions under which one should prefer one approach over
the other via simulations and empirical applications.

Chapter 4 presented a nonparametric framework of dynamic cost minimization with
durable and storable inputs. Both types of inputs link production in different time
periods together. We explicitly modeled the possibility that different vintages of durables
are used and we allow for production delays. We present a nonparametric test for
consistency with dynamic cost minimization and quantify the degree of inefficiency. We
further decompose this inefficiency measure into period-specific cost inefficiencies. The
framework is illustrated with an application on Swiss railway companies.

Future work can expand on this work in multiple directions. First, one could further
combine our dynamic cost minimization framework with the nonparametric methodology
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for multi-output production analysis of Cherchye et al. (2013, 2014). This would account
for interdependencies between different output production processes through joint inputs
while also enabling us to exclusively assign inputs to specific outputs. Second, our
framework can be used in combination with various productivity measures (such as the
LHM TFP indicator of Chapter 3). This combination will lead to richer productivity
analyses because it explicitly accounts for intertemporal production interdependencies
through storable and durable inputs. Third, the focus of this chapter was on efficiency
under the assumption of perfect price foresight: i.e., our efficiency measures are based on
solutions of LPs that assume the evaluated firm correctly predicts the prevailing prices.
In practice, this assumption rarely holds so that inefficiency can, at least partially, be
explained by failure of this assumption. From a regulator perspective, it is therefore
useful to consider efficiency measures allowing for price uncertainty where one considers
efficiency under all possible (realistic) price situations. This would ensure that new
regulation schemes by the regulator are not too harsh or too loose for the individual
firms. A good starting point towards integration in our framework is Kuosmanen and
Post (2002).

Finally, Varian (1982) has developed a nonparametric approach to consumer demand
analysis that is formally analogous to the nonparametric approach to production analysis
to which we adhere here. Following this analogy, we may translate the insights develo-
ped in this chapter towards a consumption setting to obtain a more realistic modeling
of intertemporal aspects of consumer behavior.6 Specifically, our concept of storable
inputs corresponds to the notion of infrequent purchases in a consumption context, and
durable inputs are similar in spirit to durable consumption goods (for example, cars,
houses, etc.) in a demand setting.

Chapter 5 identified direction vectors from key DMUs. These key DMUs are the im-
portant (dominating) peers among all DMUs in the sample. Thus, key DMUs are those
DMUs which are frequently part of the virtual benchmark DMU constructed when ben-
chmarking DMUs under a variety of different direction vectors. Through a comparative
analysis of these key DMUs’ characteristics we identified key objectives which are then
used as the direction vectors. We further presented an easy to compute visualization
tool to compare the input-output mix and scale of dominating peers to the benchmar-
ked DMU. These tools were put into practice in the empirical application where we
benchmarked all the customer segments of a telecom operator.

We see four immediate directions for future research. First of all, our proposed
way of selecting objectives is limited to objectives with the same units of measurement.
Future work could consider alternative ways of selecting these objectives when units
of measurement are different. Second, it can be important to consider the direction
vectors of earlier periods when choosing direction vectors. This would make the choice of
direction vector an intertemporal problem where one accounts for the history of direction
vector choices. This intertemporal dependence can be important as ignoring it could lead

6See, for example Crawford (2010) and Crawford and Polisson (2014) for recent contributions to the
nonparametric analysis of intertemporal consumer behavior.
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to conflicting management conclusions over time. Third, valuable information can be
found in tracking the evolution of dominating peers over time. Visualization tools that
present these temporal changes can aid decision makers. The proposed input-output mix
similarity and scale visualization plot might be extended to show these temporal changes.
Finally, extending the peer screening to models with output-specific technologies such
as those of Cherchye et al. (2013, 2016) presents challenges of its own. These arise from
the fact that each output-specific technology has its own set of dominating peers. The
main challenge is then to reconcile the individual results obtained from peer screening
the dominating set of every output.

Future research avenues

In addition to the already mentioned extensions, we see a number of interesting avenues
for future research. Naturally, these potential future research avenues are but a small
sample of interesting topics for future work. The selection below merely constitutes
research topics which we find particularly interesting.

First of all, we could further increase the realism of our models by using output-
specific technologies which have output-specific inputs and joint inputs as in Cherchye
et al. (2013, 2016). These joint inputs link the different output-specific technologies.
In particular, the integration of these output-specific technologies in the by-production
approach of Murty et al. (2012) to model pollution-generating technologies comes to
mind. One example which can serve as a starting point is Cherchye et al. (2015) who use
the output-specific technologies of Cherchye et al. (2013) with bad outputs by applying
a transformation to the bad outputs. Furthermore, where possible and appropriate we
should account for the intertemporal dependencies that exist in production.

Second, we might need to concede that the inefficiency we measure can sometimes be
intentional. Bogetoft and Hougaard (2003) argued that inefficiency can be an indirect,
on-the-job compensation to agents in an organization to keep them motivated or to cre-
ate loyal workers. Asmild et al. (2013), for example, find a systematic pattern in slacks
between staff groups. In this respect slacks can be the result of a deliberate, rational
choice. This provides an opportunity to combine revealed preferences methodology with
nonparametric production methodology to separate “rational inefficiency” from “irrati-
onal inefficiency”. The revealed preferences methodology can be used to check whether
the measured amounts of inefficiency are consistent with a utility maximizing individual
or utility maximizing collective decision maker. Deviations from rational choices can
then help in separating rational inefficiency from the irrational kind.

Third, competition analysis often relies on parametric assumptions, for example, to
detect collusion. Recently, a number of papers such as Carvajal et al. (2013, 2014) star-
ted to explore nonparametric restrictions to test assumptions on market behavior. It is
possible that economic efficiency measures could also be used in competition analysis.
Profit efficiency analysis relies on the assumption of perfect competition while cost ef-
ficiency analysis relaxes this assumption for the output prices. The difference between
profit efficiency and cost efficiency may convey information about the degree or type
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of competition. This research avenue may be of considerable interest to competition
authorities and regulators.

Finally in a world of big data, economics faces – like nearly every other discipline –
major opportunities and challenges. Ever more data becomes available in the future for
researchers which is both a blessing and a curse. Massive amounts of data – hopefully –
enable us to provide better answers to our research questions while posing challenges of
its own. These problems include devising efficient algorithms that improve computatio-
nal complexity, visualization of results, detecting patterns in results and translating this
in clear cut messages for management. Tackling these issues will be critical in order to
deal with the availability of ever more data in the future.

Visualization will become ever more important for data exploration and analysis of
results. Due to the large amount of results and in order to summarize the most important
managerial implications, it is worthwhile in future research to look into computational
techniques to detect patterns. For example: Dai and Kuosmanen (2014) combine cluste-
ring methods with efficiency analysis to identify absolute and relative benchmarks within
every cluster of DMUs.

As a consequence of duality the computational problems in the linear programs
can differ: either the optimization variables or the number of constraints scale with
the number of observations. Exponential amounts of data then result in exponential
number of optimization variables or constraints. Both issues require different solutions.
The problem is less of an issue for enumeration algorithms typically encountered with
non-convex technologies. One possible solution therefore can be to use a non-convex
technology as a preprocessing step to select a subsample of the data as comparison
partners in the efficiency analysis. The subsample then only contains the observations
marked as efficient under a non-convex technology which are potentially also efficient
under a convex technology. This approach would reduce the number of constraints or
optimization variables in the linear programs.
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