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1. Introduction

Assessing the drivers of productivity growth is important for business and eco-
nomic policy. Their identification allows monitoring of industries and can guide
policymakers in their decisions. Hence, an abundant literature has sought to de-
compose various measures of productivity growth into components of technical
change, efficiency change and scale efficiency change.1 The literature has largely
focused on ratio-based productivity “indexes”. Yet, O’Donnell (2012a) recently
shows that not all such decomposable indexes are “multiplicatively complete” (i.e.
consisting of a ratio of an output aggregator to an input aggregator), while all
multiplicatively complete indexes are decomposable in this way. He demonstrates
that the class of multiplicatively complete productivity indexes includes Laspey-
res, Paasche, Fischer, Törnqvist and Bjurek (1996)’s Hicks-Moorsteen indexes, but
does not include the popular Malmquist index of Caves et al. (1982).
Ratio-based productivity indexes are undefined when one or more of the vari-

ables are equal or close to zero (Balk et al., 2003). Difference-based productivity
“indicators” do not suffer from this problem and are thus particularly useful in
regulatory contexts.
Difference-based indicators were developed to measure Total Factor Productivity

(TFP) growth based on Luenberger (1992)’s shortage function. This directional
distance function, introduced by Chambers et al. (1996) in a production context,
extends the Shephard input and output distance functions by allowing for simulta-
neous contraction of inputs and expansion of outputs. Chambers (2002) introduced
a general difference-based Luenberger productivity indicator which can be decom-
posed in a technical change and efficiency change component (Chambers et al.,
1996).2 Since its introduction, it has frequently been applied in empirical ap-
plications (e.g. Nakano and Managi (2008)) and additional decompositions of its
technical change component (e.g. Briec and Peypoch (2007)) and efficiency change
component (e.g. Epure et al. (2011)) have been proposed in the literature. Howe-
ver, the Luenberger productivity indicator is not “additively complete” (i.e. con-
sisting of a difference between an output aggregator and an input aggregator) and
thus cannot be disentangled into components of output growth and input growth.
Briec and Kerstens (2004) introduced the Luenberger-Hicks-Moorsteen (LHM)

TFP indicator, which is a difference-based, additively complete alternative to the

1See Färe et al. (1998) and Grosskopf (2003) for historical overviews.
2The “economic” approach to productivity measurement requires price information and if

in addition (i) some assumptions can be made about firm behavior and (ii) the technology is
approximated by a known flexible functional form up to the second order, then one can use a
“superlative” index as advocated by Diewert (1976). Chambers (2002) showed that the Bennet-
Bowley indicators are exact and superlative approximations of the Luenberger productivity in-
dicator under (i) profit-maximizing behavior and (ii) a quadratic technology directional distance
function. A corresponding superlative indicator for the LHM TFP indicator is currently not
known.



DECOMPOSING THE LHM TFP INDICATOR 3

ratio-based, multiplicatively complete Hicks-Moorsteen index.3 Notwithstanding
the attractive properties of the LHM TFP indicator, only few empirical studies
can be found in the literature (e.g. Barros et al. (2008) and Managi (2010)). One
possible reason for the limited number of applications is the fact that a full de-
composition into components of technical change, technical inefficiency change and
scale inefficiency change has hitherto not been developed. A first effort was made
by Managi (2010) who decomposed the LHM TFP indicator into components of
technical change and (in)efficiency change. However, this decomposition lacks
a scale inefficiency change component and does not correctly capture technical
change and technical inefficiency change (see Appendix A). No full decomposition
of a difference-based TFP indicator being additively complete is thus presently
known in the literature.
The current paper contributes to the existing literature by introducing a de-

composition of the additively complete LHM TFP indicator into components of
technical change, technical inefficiency change and scale inefficiency change. Our
decomposition is general in that it does not require convexity or differentiability of
the technology set. It is similar to Diewert and Fox (2014, 2017)’s decomposition
of the ratio-based Hicks-Moorsteen TFP index.
Using a nonparametric framework, we illustrate the decomposition with an em-

pirical application to state-level data of the U.S. agricultural sector over the period
1960− 2004. Since our decomposition is suitable for non-convex as well as convex
technologies, we demonstrate its flexibility by using the Free Disposal Hull as well
as Data Envelopment Analysis. To the best of our knowledge, no other studies
using the same dataset have investigated the issue of potential non-convexities.
However, we believe that such an investigation is particularly relevant in the con-
text of the agricultural sector. Inputs such as capital equipment are nondivisible,
potentially leading to non-convexities.
This paper is structured as follows. The next section describes Luenberger’s

directional distance function and the LHM TFP indicator. We then introduce our
complete decomposition and apply this to state-level data of the U.S. agricultural
sector over the period 1960− 2004. The final section concludes.

2. The Luenberger-Hicks-Moorsteen TFP indicator

Let xt ∈ R
n
+ be the nonnegative inputs that are used to produce nonnegative

outputs yt ∈ R
m
+ . We define the technology set in the usual way:

Y t =
{

(xt,yt) ∈ R
n+m
+ |xt can produce yt

}

.

Furthermore, we make the following minimal assumptions on the technology set
(Chambers, 2002):

3See Briec et al. (2012) for exact relations between the Luenberger-Hicks-Moorsteen TFP
indicator and the Hicks-Moorsteen TFP index.



4 F. ANG AND P. J. KERSTENS

Axiom 1 (Closedness). Y t is closed.

Axiom 2 (Free disposability of inputs and outputs). if (x′
t,−y′

t) ≥ (xt,−yt) then
(xt,yt) ∈ Y t ⇒ (x′

t,x
′
t) ∈ Y t.

Axiom 3 (Inaction). Inaction is possible: (0n,0m) ∈ Y t.

Convexity of the technology set is thus not a necessary condition for our decom-
position.4 We illustrate this in our empirical application.
Luenberger’s directional distance function is a measure of technical inefficiency

as it simultaneously contracts inputs and expands outputs. The directional dis-
tance function proposed by Chambers et al. (1996) is:

(1) Dt(xt,yt;gt) = sup
{

β ∈ R : (xt − βgi
t,yt + βgo

t ) ∈ Y t

}

,

if (xt − βgi
t,yt + βgo

t ) ∈ Y t for some β and Dt(xt,yt;gt) = −∞ otherwise. Here,
gt = (gi

t,g
o
t ) represents the direction vector. The directional distance function is

a special case of Luenberger (1992)’s shortage function.
We denote the time-related directional distance function for (a, b) ∈ {t, t+ 1}×

{t, t+ 1}:

Db(xa,ya;ga) = sup
{

β ∈ R : (xa − βgi
a,ya + βgo

a) ∈ Yb

}

.

Next, we turn to the Luenberger-Hicks-Moorsteen (LHM) TFP indicator pro-
posed by Briec and Kerstens (2004). This can be seen as the difference-based
equivalent of the ratio-based Hicks-Moorsteen (HM) TFP index. They define the
LHM TFP indicator with base period t as the difference between a Luenberger
output quantity indicator and a Luenberger input quantity indicator:

LHMt(xt+1,yt+1,xt,yt;gt,gt+1)(2)

=
[

Dt(xt,yt; (0,g
o
t ))−Dt(xt,yt+1; (0,g

o
t+1))

]

−
[

Dt(xt+1,yt; (g
i
t+1, 0))−Dt(xt,yt; (g

i
t, 0))

]

≡ LOt(xt,yt,yt+1;g
o
t ,g

o
t+1)− LIt(xt,xt+1,yt;g

i
t,g

i
t+1).

Similarly, a base period t+ 1 LHM TFP indicator is defined as:

LHMt+1(xt+1,yt+1,xt,yt;gt,gt+1)(3)

=
[

Dt+1(xt+1,yt; (0,g
o
t ))−Dt+1(xt+1,yt+1; (0,g

o
t+1))

]

−
[

Dt+1(xt+1,yt+1; (g
i
t+1, 0))−Dt+1(xt,yt+1; (g

i
t, 0))

]

≡ LOt+1(xt+1,yt+1,yt;g
o
t ,g

o
t+1)− LIt+1(xt,xt+1,yt+1;g

i
t,g

i
t+1).

4In fact, the LHM TFP indicator and our decomposition are applicable to a wider range
of non-convex models that satisfy the above axioms and for which the directional distance
function can be defined. Examples of these non-convex models include the Constant-Elasticity-
of-Substitution-Constant-Elasticity-of-Transformation model of Färe et al. (1988), relaxed con-
vexity model of Petersen (1990) and Bogetoft (1996), selective convexity model of Podinovski
(2005) and B-convexity model of Briec and Liang (2011).
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O’Donnell (2012a) (p.258, footnote 5) defines additive completeness as follows:

Definition 1 (Additive completeness). Formally, let TFPI(xt, qt, xs, qs) denote

an index number that compares TFP in period s with TFP in period t using period

s as a base. TFPI(xt, qt, xs, qs) is additively complete if and only if it can be

expressed in the form TFPI(xt, qt, xs, qs) = Q(qt)−Q(qs)−X(xt) +X(xs) where
Q(·) and X(·) are non-negative non-decreasing functions satisfying the translation

property Q(q + λq) = Q(q) + λ and X(x+ λx) = X(x) + λ for λ > 0.

LHMt(·) and LHMt+1(·) are “additively complete” in O’Donnell’s sense. This
can be verified from their definitions above where the directional distance function,
along with its corresponding direction vector, serves as the output (using (0,go

s))
and input (using (gi

s, 0)) aggregator functions.
5

Finally, one takes an arithmetic average of LHMt and LHMt+1 to avoid an
arbitrary choice of base periods:6

LHMt,t+1(xt,yt,xt+1,yt+1;gt,gt+1) =
1

2
[LHMt + LHMt+1] .(4)

The HM TFP index is defined as the ratio of an output index to an input index.
Similarly, we can show that the LHM TFP indicator equals the difference bet-
ween an output indicator and an input indicator, which are themselves arithmetic
averages of two output and two input indicators:

LHMt,t+1 =
1

2
[LOt + LOt+1]−

1

2
[LIt + LIt+1](5)

≡ LOt,t+1 − LIt,t+1.

5Luenberger (1992)’s shortage function differs from Chambers (2002)’ Luenberger productivity
indicator. The shortage function satisfies the translation property. It is an aggregator function
that can be used to compute components of an additively complete indicator (such as the LHM
TFP indicator), but is not additively complete. Chambers (2002) defines the Luenberger pro-
ductivity indicator as follows:

Lt,t+1(xt,yt,xt+1,yt+1;gt,gt+1)

=
1

2

[

(Dt(xt,yt;gt)−Dt(xt+1,yt+1;gt+1))

+ (Dt+1(xt,yt;gt)−Dt+1(xt+1,yt+1;gt+1))
]

,

All directional vectors are determined in the input direction as well as the output direction, i.e.
ga = (gi

a,g
o
a) > 0. This prevents us from disentangling the indicator into separate output and

input aggregator functions.
6This average can be harder to interpret in regulatory and managerial contexts in which a

clearer target is required. This can easily be accounted for by a different choice of weights for
both periods: i.e. we can define LHMt,t+1 = ζLHMt + (1− ζ)LHMt+1 with weights ζ ∈ [0, 1].
One can then for example set ζ = 0 or ζ = 1. These weights trickle down in the technical change
and scale inefficiency change components of our decomposition in a straightforward way.



6 F. ANG AND P. J. KERSTENS

3. Decomposition of the Luenberger-Hicks-Moorsteen indicator

This section introduces our LHM decomposition along with illustrative figures
in the one input - one output dimension to provide the intuition. We show an
example with a non-convex technology (i.e. Free Disposal Hull), as convexity is
not a necessary assumption for our decomposition. Note, however, that one can
also use our approach for a convex technology.
In line with the decomposition of the HM TFP index, the LHM TFP indicator

can be decomposed using the output direction or input direction.7 We focus on
the decomposition using the output direction, but provide a similar decomposition
using the input direction in Appendix B. Our LHM decomposition is a specific
case (analogous to the multiplicatively complete case discussed in Section 3.7 of
O’Donnell (2012a)) of an additively complete indicator that uses the directional
distance function as the aggregator function for both inputs and outputs. Hence,
in our case the mix efficiency change components are all 0 and our decomposition
consists of three components:

(6) LHMt,t+1 = ∆T o
t,t+1 +∆TEIot,t+1 +∆SECo

t,t+1,

representing technical change, technical inefficiency change and scale inefficiency
change respectively.8 Given the close relation to the HM TFP index, it is no
surprise that our decomposition is similar to Diewert and Fox (2014, 2017)’s de-
composition of the HM TFP index.
The technical change component is

∆T o
t,t+1 =

1

2
{[Dt+1(xt,yt; (0,g

o
t ))−Dt(xt,yt; (0,g

o
t ))](7)

+
[

Dt+1(xt+1,yt+1; (0,g
o
t+1))−Dt(xt+1,yt+1; (0,g

o
t+1))

]}

≡
1

2

{

∆T o
t +∆T o

t+1

}

.

Technical change ∆T o
t,t+1 is the arithmetic average of ∆T o

t and ∆T o
t+1. Figure 1

depicts these technical change components. The arithmetic average is used to avoid
an arbitrary choice of the observation under evaluation. Here, ∆T o

t measures the
difference in efficiency for observation (xt,yt) evaluated against production frontier
t + 1 and t. An upward (downward) shift of the production frontier between t
and t + 1, indicating technical progress (regress), results in a positive (negative)

7The technical change and technical inefficiency change components in particular are comple-
tely determined by this choice. The additive completeness property of the LHM TFP indicator
can guide this decision by checking whether LHM TFP is mostly driven by LOt,t+1 or LIt,t+1.
This contrasts with the Luenberger productivity indicator where both inputs and outputs con-
tribute to its components.

8Managi (2010)’s decomposition lacks a scale inefficiency change component. We refer to
Appendix A for a discussion.
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difference. ∆T o
t+1 is similar to ∆T o

t but evaluated for observation (xt+1,yt+1).
Thus, technical change measures (local) shifts of the production frontier itself.

t+ 1

t

b

b

∆T o
t+1

∆T o
t

(xt,yt)

(xt+1,yt+1)

x

y

Figure 1. Technical change

The technical inefficiency change component is

∆TEIot,t+1 = Dt(xt,yt; (0,g
o
t ))−Dt+1(xt+1,yt+1; (0,g

o
t+1)),(8)

and measures the change between period t and period t+1 in the relative position to
the production frontier. Positive (negative) values of ∆TEIot,t+1 indicate efficiency
improvement (deterioration) over time: (xt+1,yt+1) is located closer (farther) to
the t + 1 frontier than (xt,yt) was to the t frontier. In Figure 2 this means that
Dt+1(xt+1,yt+1) is smaller (larger) than Dt(xt,yt). Note that ∆TEIo only mea-
sures the evolution in technical efficiency of the observation under consideration
without taking into account changes of the production frontier over time.
This technical inefficiency change component can be further decomposed in the

same way as done by Epure et al. (2011) for the Luenberger indicator into “pure”
inefficiency and, for example, congestion changes.
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t+ 1

t

b

b

Dt+1(·)

Dt(·)

(xt,yt)

(xt+1,yt+1)

x

y

Figure 2. Technical inefficiency change

Finally, from the residual

LHMt,t+1−∆T o
t,t+1 −∆TEIot,t+1(9)

=
1

2

{[

Dt(xt+1,yt+1; (0,g
o
t+1))−Dt(xt,yt+1; (0,g

o
t+1))

]

+ [Dt+1(xt+1,yt; (0,g
o
t ))−Dt+1(xt,yt; (0,g

o
t ))]}

−
1

2

{[

Dt(xt+1,yt; (g
i
t+1, 0))−Dt(xt,yt; (g

i
t, 0))

]

+
[

Dt+1(xt+1,yt+1; (g
i
t+1, 0))−Dt+1(xt,yt+1; (g

i
t, 0))

]}

,

we can distill the scale inefficiency change component as follows. First, we define
the projections of yt and yt+1 on the production frontier at time t using notation
of Diewert and Fox (2017):

y∗
t = yt +Dt(xt,yt; (0,g

o
t ))g

o
t(10a)

y∗∗
t+1 = yt+1 +Dt(xt+1,yt+1; (0,g

o
t+1))g

o
t+1(10b)

Similarly, we define the projections of yt and yt+1 on the production frontier at
time t+ 1:

y∗∗
t = yt +Dt+1(xt,yt; (0,g

o
t ))g

o
t(11a)

y∗
t+1 = yt+1 +Dt+1(xt+1,yt+1; (0,g

o
t+1))g

o
t+1(11b)
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Then, respectively adding and subtractingDt(xt,yt; (0,g
o
t )) andDt+1(xt+1,yt+1; (0,g

o
t+1))

to and from (9), and using the translation property of the directional distance
function and the definitions of the projections above, we find the scale inefficiency
change component:

∆SECo
t,t+1 =

1

2

{[

Dt(xt,y
∗
t ; (0,g

o
t ))−Dt(xt,y

∗∗
t+1; (0,g

o
t+1))

]

(12)

−
[

Dt(xt+1,yt; (g
i
t+1, 0))−Dt(xt,yt; (g

i
t, 0))

]

+
[

Dt+1(xt+1,y
∗∗
t ; (0,go

t ))−Dt+1(xt+1,y
∗
t+1; (0,g

o
t+1))

]

−
[

Dt+1(xt+1,yt+1; (g
i
t+1, 0))−Dt+1(xt,yt+1; (g

i
t, 0))

]}

≡
1

2

{

SOCo
t − SICo

t + SOCo
t+1 − SICo

t+1

}

≡
1

2

{

∆SECo
t +∆SECo

t+1

}

,

which has the interpretation of measuring changes in “global” returns to scale in
line with Diewert and Fox (2017). As a result, our scale inefficiency change compo-
nent does not require differentiability or convexity of the production technology.
Figure 3 illustrates the intuition behind (12). Again, the arithmetic average of
∆SECo

t and ∆SECo
t+1 is used to avoid an arbitrary choice of base period for the

technology. Both components have a similar interpretation as a finite difference
approximation of the frontier’s gradient. ∆SECo

t is a finite difference approxima-
tion of the frontier t’s gradient and measures the change in inputs and outputs
along the frontier when going from (xt,yt) to (xt+1,yt+1). The change in inputs
and outputs is measured separately: the SOCo

t (SICo
t ) subcomponent of ∆SECo

t

keeps the inputs (outputs) constant while measuring the change in the level of
outputs (inputs).
This “residual” approach of Diewert and Fox (2017) differs from the traditio-

nal “Constant-Returns-to-Scale-Variable-Returns-to-Scale” (CRS-VRS) approach
of Färe et al. (1994) for the Malmquist index and Epure et al. (2011) for the Luen-
berger indicator. The CRS-VRS approach compares the VRS frontier to a (hypot-
hetical) benchmark CRS frontier to detect changes in returns to scale over time.
In contrast, the residual approach directly considers changes in the frontier’s gra-
dient over time to assess scale inefficiency change. Thus, the main difference is
that the Färe et al. (1994) approach relies on two frontiers (VRS and CRS) to
measure scale inefficiency change, while the residual approach of Diewert and Fox
(2017) only uses one frontier (VRS in our case).
From a theoretical point of view, CRS is often not a realistic assumption whe-

reby this hypothetical CRS frontier to measure changes in returns-to-scale is not
appropriate. In contrast, the main strength of the residual approach is that we
do not need to introduce a CRS component into the LHM TFP indicator to de-
tect changes in returns-to-scale. If the technology exhibits CRS then this will be
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t+ 1

t

bb

b b

b

b

b

b

SOCo
t+1

SOCo
t

SICo
t+1

SICo
t(xt,yt) (xt+1,yt)

(xt,yt+1) (xt+1,yt+1)

(xt,y
∗

t )

(xt,y
∗∗

t+1)

(xt+1,y
∗∗

t )

(xt+1,y
∗

t+1)

x

y

Figure 3. Scale inefficiency change

automatically reflected in zero values for the ∆SECo
t,t+1 component even if we

use a VRS approximation. Of course, depending on the application at hand and
results of a preliminary test on returns-to-scale, the LHM TFP indicator and our
decomposition can also be computed under other returns-to-scale assumptions.
From a practical point of view, an obvious drawback to the “CRS-VRS” approach
is that it is sensitive to outliers, because the CRS frontier can be spanned by a
few (extreme) observations. This drawback can be reduced by using appropriate
techniques such as order-m (Cazals et al., 2002) or order-α (Aragon et al., 2005).
The accuracy of the residual approach to approximate the gradient of the frontier

depends on the “step-size”, i.e. the gap SICo
t and SICo

t+1 between the frontier
projections of xt and xt+1 for the decomposition using output directions. The
larger the step-size, the cruder the approximation.9 Thus, a big change in inputs
for a DMU from period t to period t + 1 can give a cruder approximation of the
frontier’s gradient.
As a final remark, observe that both ∆T o

t,t+1 and ∆SECo
t,t+1 are the arithmetic

average of a Laspeyres (using base period t) and a Paasche (using base period
t+ 1) type indicator.

9This step-size is analogous to h in the commonly used definition of a derivative of a function

f : f ′(x) = limh→0
f(x+h)−f(x)

h
. The more h approaches zero, the better the approximation of

the derivative at the evaluated point. Likewise, the smaller SICo
t and SICo

t+1, the better the

approximation of the frontier’s gradient.
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4. Empirical application: U.S. agriculture

We investigate LHM TFP growth of U.S. agriculture across 48 states10. We
use our newly developed LHM decomposition to determine the main drivers of
productivity growth. Specifically, we investigate the extent to which LHM TFP
growth is driven by output growth and input growth, on the one hand, and techni-
cal change, technical inefficiency change and scale inefficiency change, on the other
hand.

4.1. Data description. We use U.S. state-level agricultural panel data compiled
by the U.S. Department of Agriculture (USDA). The data ranges from 1960 to 2004
and includes prices and quantities for 3 outputs (crops, livestock and other) and 4
inputs (land, intermediate, capital and labor). Table 1 contains mean values and
the coefficient of variation per subperiod of 11 years. A full description of the data
can be found in USDA (2016). The summary statistics suggest that aggregate
production has substantially increased. Aggregate use of land, labor and to a
lesser extent capital have decreased, while aggregate intermediate input use has
increased. The low coefficient of variation of land use reveals that this production
factor cannot be adjusted instantaneously.

10The dataset does not include data from Alaska and Hawaii.



1
2

F
.
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G

A
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P
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.
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Period Pacific Mountain Northern Plains Southern Plains Corn Belt Southeast Northeast Lake States Appalachian Delta States
1960/71 Mean 3300931.169 7255411.046 5840331.457 6292994.186 5004879.143 2215366.354 1768427.738 2444184.002 2356925.337 1520081.600

CV 0.041 0.039 0.007 0.010 0.007 0.070 0.107 0.043 0.056 0.029
1971/82 Mean 2893980.439 6720070.751 5687708.224 5781558.555 4767466.397 1773007.009 1394621.216 2199276.592 1956513.091 1343990.332

Land CV 0.015 0.007 0.011 0.017 0.009 0.027 0.014 0.014 0.021 0.016
1982/93 Mean 2710142.283 6508197.735 5544756.703 5535859.150 4632340.008 1484494.228 1267039.795 2112296.486 1818028.473 1206858.098

CV 0.029 0.011 0.004 0.004 0.011 0.067 0.055 0.024 0.030 0.039
1993/04 Mean 2590402.638 5967026.474 5581123.690 5718432.955 4582192.192 1428024.529 1190460.233 2085066.363 1802684.458 1209153.491

CV 0.016 0.035 0.005 0.011 0.007 0.020 0.021 0.009 0.013 0.018
1960/71 Mean 6388062.631 5374177.714 9020391.093 5551339.202 16939475.421 4322275.998 5303636.777 8170759.798 4824174.845 3346989.032

CV 0.047 0.125 0.092 0.126 0.048 0.119 0.034 0.027 0.064 0.125
1971/82 Mean 7546312.374 7223653.517 11783582.906 7805959.230 18720865.969 5445467.048 5643208.149 9328635.249 5770043.712 4124055.132

Intermediate CV 0.111 0.091 0.128 0.094 0.074 0.112 0.090 0.112 0.093 0.086
1982/93 Mean 8462752.863 6899795.667 12869397.188 7703305.897 16985319.256 5663158.403 5712198.784 9970093.780 5939957.239 4740621.090

CV 0.058 0.029 0.032 0.070 0.056 0.037 0.026 0.057 0.022 0.130
1993/04 Mean 11556159.900 8073898.489 14492935.479 8891404.135 17845564.638 6924523.321 6077658.726 11068114.621 7896907.296 6121353.879

CV 0.082 0.070 0.078 0.064 0.047 0.066 0.054 0.059 0.119 0.031
1960/71 Mean 2277278.160 1965743.390 3839212.101 2420531.367 7485812.020 1409850.653 2761049.666 4235861.165 2550447.895 1202072.627

CV 0.020 0.058 0.054 0.056 0.084 0.070 0.021 0.030 0.067 0.115
1971/82 Mean 2583856.991 2443132.645 4662093.957 3052573.807 9993671.366 1854854.361 3040945.252 4891432.936 3233950.577 1718949.272

Capital CV 0.079 0.084 0.072 0.085 0.095 0.103 0.068 0.075 0.086 0.106
1982/93 Mean 2340101.255 2292679.329 4213514.172 2901421.560 8602936.055 1665912.719 2711313.433 4626726.086 2817472.143 1619430.276

CV 0.128 0.114 0.108 0.108 0.159 0.147 0.124 0.131 0.141 0.144
1993/04 Mean 1983069.814 1936337.760 3376963.177 2316924.548 6070538.603 1370479.997 1983837.703 3562676.158 2361032.305 1264252.022

CV 0.029 0.016 0.026 0.032 0.056 0.023 0.052 0.040 0.016 0.020
1960/71 Mean 11826308.223 7251927.972 11451651.884 10457257.796 26640405.728 8806948.892 12416331.593 17517663.881 16278275.980 8020645.246

CV 0.124 0.089 0.134 0.141 0.164 0.117 0.182 0.141 0.171 0.192
1971/82 Mean 10262405.279 6501263.073 10321361.426 7673646.814 20171125.527 6484264.056 9595326.458 13841201.345 9745925.952 4745991.646

Labor CV 0.059 0.033 0.062 0.096 0.066 0.101 0.040 0.030 0.137 0.149
1982/93 Mean 9271807.049 6202223.028 9061470.223 6519170.104 16138668.519 4774474.559 8008139.689 12006149.317 7133646.807 3299937.462

CV 0.064 0.088 0.117 0.051 0.095 0.074 0.136 0.126 0.163 0.090
1993/04 Mean 10210352.950 5202355.190 7081823.093 7023374.727 11939104.652 4363279.813 6389996.042 7731857.592 6268745.715 2921548.411

CV 0.083 0.043 0.056 0.047 0.097 0.042 0.052 0.136 0.050 0.059
1960/71 Mean 9125685.221 4287806.931 7041572.037 4374994.511 14332254.967 4522798.287 4261514.605 5899717.197 5730387.079 3013945.475

CV 0.080 0.081 0.111 0.061 0.087 0.054 0.036 0.063 0.050 0.093
1971/82 Mean 13188542.391 5597955.159 10329731.388 5405400.050 20625602.933 6242424.518 4699512.097 8385250.909 6594263.573 3872567.263

Crops CV 0.157 0.115 0.143 0.169 0.142 0.114 0.084 0.179 0.085 0.134
1982/93 Mean 17643771.954 6701908.463 12996711.723 5879907.506 22994725.677 7229992.378 5461209.103 10186991.736 6992866.349 4664010.212

CV 0.084 0.061 0.138 0.089 0.170 0.056 0.048 0.134 0.120 0.131
1993/04 Mean 23286483.981 7886660.357 16120799.908 6506193.595 27046336.520 8590499.524 5693994.670 12044270.033 7794004.214 5409819.779

CV 0.068 0.049 0.120 0.090 0.091 0.046 0.041 0.108 0.054 0.110
1960/71 Mean 5327584.310 4919007.684 7454614.625 5173132.409 17052320.948 4112320.193 6257852.014 9324537.634 4515637.364 2939895.358

CV 0.057 0.129 0.098 0.101 0.026 0.158 0.014 0.030 0.063 0.165
1971/82 Mean 6152491.657 6380074.865 9212170.296 7281860.962 15516508.437 5433833.885 6445471.439 9292008.630 5271046.811 3749067.268

Livestock CV 0.044 0.034 0.043 0.031 0.047 0.054 0.073 0.053 0.069 0.028
1982/93 Mean 7493949.676 6568411.982 10365093.348 7989950.726 14086364.477 6324043.452 7531591.704 10371877.289 6873033.353 4410247.573

CV 0.082 0.043 0.050 0.063 0.025 0.071 0.025 0.021 0.077 0.122
1993/04 Mean 9685007.165 8609192.715 11405247.563 9848376.630 14512438.991 8009618.671 8382637.716 10506374.382 9332273.382 6095279.863

CV 0.076 0.098 0.036 0.041 0.034 0.060 0.028 0.033 0.052 0.048
1960/71 Mean 1505214.023 754115.275 763723.724 1373528.695 973630.348 1109452.294 542393.806 574042.980 631465.964 510886.261

CV 0.072 0.074 0.111 0.261 0.085 0.066 0.202 0.186 0.154 0.123
1971/82 Mean 1287921.873 565772.514 619433.118 715874.669 779303.889 807393.456 366832.739 430656.260 433338.235 391387.399

Other CV 0.062 0.101 0.163 0.123 0.104 0.086 0.089 0.095 0.059 0.065
1982/93 Mean 1666910.125 968193.737 1430545.782 1362035.393 843864.319 869125.637 491187.178 646790.108 588487.411 619379.070

CV 0.121 0.141 0.136 0.175 0.171 0.193 0.091 0.126 0.295 0.408
1993/04 Mean 2550514.545 1351626.269 1934947.718 1728703.994 1218992.400 1394982.468 667759.874 904455.293 1049200.724 992821.059

CV 0.178 0.142 0.134 0.135 0.106 0.230 0.209 0.181 0.216 0.128

Table 1. Mean and coefficient of variation (CV) for quantities per subperiod in 1996 US dollars (×103).
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The USDA identifies 10 regions of agricultural production in the U.S. An over-
view is provided in Table 2.

Region States
Pacific CA, OR, WA
Mountain AZ, CO, ID, MT, NM, NV, UT, WY
Northern Plains KS, ND, NE, SD
Southern Plains OK, TX
Corn Belt IA, IL, IN, MO, OH
Southeast AL, FL, GA, SC
Northeast CT, DE, MA, MD, ME, NH, NJ, NY, PA, RI, VT
Lake States MI, MN, WI
Appalachian KY, NC, TN, VA, WV
Delta States AR, LA, MS

Table 2. Regions of agricultural production

We compute LHM TFP growth and its output-oriented decomposition for every
state over the selected time period. We compare across all 48 states when compu-
ting the necessary distance functions and thus assume that all states have access
to a similar production technology. This is also the approach of Zof́ıo and Lovell
(2001) and Ball et al. (2010). Alternatively, we could compare states within the
same agricultural region (see Table 2). However, this would limit the set of obser-
vations to 2 or 3 for some regions, which may be insufficient.11

We first conduct the analysis for a non-convex technology (using Free Disposal
Hull under a variable-returns-to-scale assumption) and then repeat the analysis for
a convex technology (using Data Envelopment Analysis under a variable-returns-
to-scale assumption). This shows the applicability of our decomposition for both
technologies and highlights potential differences that can arise due to convexity
assumptions of the production technology.

4.2. Non-convex technology. In practice, Y t is unknown and needs to be esti-
mated from theK observations in the dataset. The smallest enveloping non-convex
approximation under variable-returns-to-scale (VRS) is given by:

Ŷ t =

{

(x0t,y0t)|
K
∑

k=1

λkxkt ≤ x0t,

K
∑

k=1

λkykt ≥ y0t,

K
∑

k=1

λk = 1, λk ∈ {0, 1}

}

,(13)

and can be plugged in (1) to compute the directional distance function in practice.
The resulting program is a mixed-integer program and can be computationally
harder to solve than the usual linear program. As first pointed out by Tulkens

11O’Donnell (2012b) applies window analysis to circumvent this problem, but uses rather large
windows for some regions. This can dampen the estimated rates of technical change.
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(1993), there exists an equivalent formulation based on enumeration which is con-
siderably easier to solve. The enumeration formulation for directional distance
functions with gt > 0 proposed by Cherchye et al. (2001) is:

Db(x0a,y0a;ga) = max
k∈{1,...,K}







min
j∈{1,...,m},
v∈{1,...,n}

{

Y j
kb − Y j

0a

goja
,
Xv

0a −Xv
kb

giva

}







,(14)

with (a, b) ∈ {t, t+ 1} × {t, t+ 1}. This allows us to compute all distance functi-
ons needed for the LHM TFP indicator and its decomposition. In line with the
literature, we choose gi

a = x0a and go
a = y0a such that β can be interpreted as the

maximum proportional expansion (contraction) in the output (input) direction.12

Since we work with aggregate data, all of our chosen directional vectors are non-
zero. Moreover, the data set only contains nonnegative outputs yt ∈ R

m
+ . As a

result, we can use the simplified formula (14).13

4.2.1. Main findings for the U.S. We first present the results for the U.S. as a whole
before presenting individual results for the agricultural regions. We first consider
the average LHM TFP change in Figure 4. This is computed in a given year by
taking the average LHM TFP of all states. This figure shows several considerable
LHM TFP changes over time. Until 1979 − 1980, bad years offset good years
resulting in only marginal cumulative LHM TFP growth over this period. After
this period, positive growth rates dominate negative growth rates resulting in a
positive cumulative LHM TFP growth of 78.61% in 2004. This boils down to an
average LHM TFP growth of 1.79% per year.
Figure 5 also shows the underlying drivers of these trends. Up to 1979− 1980,

cumulative LHM TFP growth is driven by LIt,t+1. Subsequently, both input de-
cline and output growth contribute to substantial LHM TFP growth. Cumulative
output growth is 44.10%, while cumulative input decline is 34.51%. This means
that U.S. agricultural production simultaneously increases output production at
an average rate of 1% per year while decreasing input use at an average rate of
0.78% per year.
We now turn to our LHM TFP decomposition. Technical progress is the main

driver of LHM TFP growth which is partly offset by scale inefficiency growth. Over
the entire period, technical progress increased with 139.57% on average while cu-
mulative scale inefficiency change reached −60.63%. Technical inefficiency change

12This choice of the direction vector takes into account state heterogeneity and projects each
observation in a different direction onto the frontier. Recently, more advanced data-driven appro-
aches were developed that determine the direction vectors using the analyzed firm’s configuration
(see Daraio and Simar (2016) for technical details and Epure (2016) for a management-oriented
discussion). Finally, a homogeneous direction vector is more desirable, for example, for regulators
in sectors where heterogeneity in input-output configurations is low.

13We use Bogetoft and Otto (2015)’s Benchmarking package in R to compute the distance
functions.
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plays virtually no role. Table 3 summarizes these results and also lists the minimal
and maximal values of the LHM TFP indicator and its components per subperiod
of 11 years. It also lists the corresponding states.
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Figure 4. Mean TFP change in the U.S. using a non-convex technology

LHMt,t+1 LOt,t+1 LIt,t+1 ∆T o
t,t+1

∆TEIot,t+1
∆SECo

t,t+1∑
2004
t=1960

mean(states) 78.61 44.10 -34.51 139.57 -0.32 -60.63
Avg growth rate 1.79 1.00 -0.78 3.17 -7.30 ×10−3 -1.38

min

1960/71 -5.72 (OK) -4.70 (OK) -6.61 (RI) -8.77 (FL) -1.45 (OK) -30.20 (RI)
1971/82 -1.99 (WY) -1.18 (IN) -2.46 (SC) -13.81 (AZ) -0.57 (PA) -7.95 (DE)

1982/93 0.30 (FL) -2.02 (SD) -4.76 (NH) -1.22 (AR) -0.28 (MO) -14.44 (NH)

1993/04 -1.03 (VT) -0.60 (WY) -3.11 (MA) -3.38 (AL) -1.40 (OK) -10.13 (DE)

max

1960/71 3.29 (RI) 2.99 (NV) 2.02 (CO) 33.49 (RI) 0.00 (all but OK) 9.68 (FL)

1971/82 3.90 (OK) 4.12 (NE) 2.98 (ID) 7.64 (NH) 1.45 (OK) 14.60 (AZ)
1982/93 7.45 (UT) 4.13 (AR) 1.42 (OK) 17.79 (NH) 0.57 (PA) 6.81 (UT)

1993/04 5.34 (MA) 5.42 (SC) 1.99 (TN) 13.76 (DE) 0.28 (MO) 7.61 (AL)

Table 3. LHM TFP growth and its components in the U.S. over
1960− 2004 (in %) using a non-convex technology

4.2.2. Main findings per region. Figure 6 depicts the average cumulative LHM
TFP and its components for every region over time. The mean is computed with
respect to all states in that particular agricultural production region. The highest
cumulative TFP growth is achieved by the Northeast, Southeast, Corn Belt and
Delta States with 84.47% − 95.62%. They are followed by the Pacific, Northern
Plains, Appalachian, Lake States and Mountain regions with 63.56% − 74.36%.
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Figure 5. Mean cumulative TFP growth in the U.S. and it com-
ponents using a non-convex technology

Finally, the Southern Plains region is severely behind the other regions with a
cumulative TFP growth of 35.95%.
Although almost all regions experience technical progress, there are diverging

trends among the different regions. Positive (negative) cumulative technical change
over the whole time period indicates progress (regress) in terms of production
technology. The Northeast experienced the largest cumulative technical progress
(349%). The Pacific region is second with 162.2% and the Lake States are third
with 104.9%. The Mountain, Corn Belt, Appalachian, Northern Plains, Delta Sta-
tes and Southeast experience milder technical progress between 49.23%− 83.65%.
The Southern Plains is the only region with a cumulative technical regress of
11.42%, mainly due to a severe dip in the period 1975 − 1980 from which it only
slowly recovers.
Technical inefficiency change generally plays a minor role. Positive (negative)

cumulative technical inefficiency change indicates that the distance to the frontier
decreases (increases) over the whole time period. Negative changes in cumulative
technical inefficiency change are quickly followed by positive changes. These spikes
are visible in the Southern Plains, Northern Plains, Corn Belt, Delta States and
Lake States. There is only a negative cumulative technical inefficiency change in
the Southern Plains, due to a drop in technical inefficiency by 7.71% in 2004.
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The trend in the scale inefficiency change is the mirror image of the trend in
technical change: regions with positive (negative) technical change experience ne-
gative (positive) scale inefficiency. Positive (negative) cumulative scale inefficiency
change indicates that the region operates at a more (less) optimal scale over the
whole time period. The Southern Plains, Southeast, Delta States, Northern Plains,
Corn Belt experience the highest positive cumulative scale inefficiency change be-
tween 4.48% − 55.07%. Cumulative scale inefficiency change is negative in the
Appalachian, Mountain and Lake States (between −1.00% and −36.05%). Cu-
mulative scale inefficiency change is most negative in the Pacific (−87.82%) and
Northeast (−253.4%) regions.
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(a) Mean TFP growth
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(b) Mean technical change
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(c) Mean technical inefficiency change
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(d) Mean scale inefficiency change

Figure 6. TFP and its decomposition per U.S. region using a non-
convex technology

4.3. Convex technology. Since we only have 48 observations per year, a non-
convex technology might provide limited discriminating power resulting in many
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efficient observations. Therefore, we repeat the analysis for a convex VRS repre-
sentation of the production technology using Data Envelopment Analysis (DEA).
The smallest enveloping approximation is given by:

Ŷ t =

{

(x0t,y0t)|
K
∑

k=1

λkxkt ≤ x0t,
K
∑

k=1

λkykt ≥ y0t,
K
∑

k=1

λk = 1, λk ≥ 0

}

,(15)

and can be plugged in (1) to compute the directional distance function in practice.
The resulting linear program with (a, b) ∈ {t, t+ 1} × {t, t+ 1} is:

Db(x0a,y0a;ga) = max
β,λk≥0

β s.t.
K
∑

k=1

λkxkb ≤ x0a − βgi
a,(16)

K
∑

k=1

λkykb ≥ y0a + βgo
a,

K
∑

k=1

λk = 1.

This allows us to compute all necessary distance functions needed for all the com-
ponents of the LHM TFP indicator. As for the FDH analysis, we choose gi

a = x0a

and go
a = y0a.

4.3.1. Main findings for the U.S. We present the results for the U.S. as a whole
before presenting individual results for the agricultural regions14. We first consider
the average annual LHM TFP change in Figure 7. This is computed in a given
year by taking the average LHM TFP of all states. This figure shows considerable
fluctuations in annual LHM TFP changes over time. Overall, years with LHM
TFP growth dominate years with LHM TFP decline.
Figure 8 shows the cumulative LHM TFP growth and the underlying drivers.

Our main finding for the U.S. as a whole is that LHM TFP clearly increases over
time. The LHM TFP indicator increases by 70.46% between 1960 and 2004. This
boils down to an average LHM TFP growth of 1.60% per year. LHM TFP growth
is driven by output growth (+62.98%) rather than input decline (−7.47%). In the
period 1977 − 1982, LIt,t+1 contributes to a temporary slowdown in LHM TFP
growth. LIt,t+1 only plays a minor role in the remaining periods.
We now turn to our LHM decomposition. Our decomposition shows that techni-

cal change (+70.55%) is the main driver, while technical inefficiency change (−1.99%)
and scale inefficiency change (+0.42%) only play a minor role. Table 4 summarizes

14Infeasibilities may arise for the components where the year of the observation differs from
the year of the reference technology. As there is no easy solution to solve this problem,
Briec and Kerstens (2009) recommend to report the infeasibilities. There were only infeasibi-
lities for Rhode Island.



DECOMPOSING THE LHM TFP INDICATOR 19

1960 1965 1970 1975 1980 1985 1990 1995 2000
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Year

T
F

P

USA

 

 

LHM
t,t+1

Figure 7. Mean TFP change in the U.S. using a convex technology

these results and lists the minimal and maximal values of the LHM TFP indica-
tor and its components per subperiod of 11 years. It also lists the corresponding
states.

LHMt,t+1 LOt,t+1 LIt,t+1 ∆T o
t,t+1

∆TEIot,t+1
∆SECo

t,t+1∑
2004
t=1960

mean(states) 70.46 62.98 -7.47 70.55 -1.99 0.42

Avg growth rate 1.60 1.43 -0.17 1.60 -0.05 9.50 ×10−3

min

1960/71 -4.37 (OK) -3.84 (NJ) -6.61 (RI) -3.83 (OK) -1.60 (OK) -3.32 (NV)

1971/82 -1.28 (WV) -1.55 (MO) -1.84 (RI) -0.67 (FL) -2.92 (WY) -1.65 (DE)

1982/93 -0.36 (TN) -1.53 (NH) -3.52 (KS) 0.64 (FL) -2.64 (MO) -1.63 (SD)
1993/04 -2.41 (WY) -2.34 (WY) -2.70 (RI) -1.34 (KY) -3.65 (WY) -0.93 (LA)

max

1960/71 7.16 (ND) 7.21 (AR) 3.18 (AR) 5.42 (NV) 3.72 (ND) 1.76 (LA)
1971/82 3.77 (IL) 3.51 (WA) 2.63 (DE) 4.05 (ND) 1.59 (OK) 1.33 (OR)

1982/93 5.64 (DE) 4.83 (WV) 1.99 (OK) 5.67 (DE) 3.62 (MT) 2.03 (IA)

1993/04 4.24 (AL) 4.11 (SD) 2.53 (KY) 4.38 (MS) 2.89 (MO) 2.54 (TN)

Table 4. TFP growth and its components in the U.S. covering the
years 1960− 2004 (in %) using a convex technology

4.3.2. Main findings per region. Figure 9 depicts the mean cumulative LHM TFP
and its components for every region over time. The mean is computed with re-
spect to all states in that particular agricultural production region. The Northern
Plains experienced the highest cumulative LHM TFP growth (119.3%) while the
Southern Plains experienced the lowest cumulative LHM TFP growth (8.96%)
over the entire period. Between them, Delta States experience the second highest
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Figure 8. Mean cumulative TFP growth and its components in
the U.S. using a convex technology

cumulative LHM TFP growth of 107%. Pacific, Corn Belt, Southeast, Northe-
ast and Mountain regions have similar levels of cumulative LHM TFP growth of
65.58%− 86.18%. The cumulative LHM TFP growth of Lake States and Appala-
chian regions varies in the range 35.36%− 46.83%.
Being the main driver of LHM TFP growth, similar trends occur for technical

change. The Northern Plains region has the highest rate of cumulative technical
change (117.9%) and the Southern Plains the lowest (6.25%). Again, Delta States
experience the second highest rate of technical change of 95%. The other regions
can roughly be classified in two clusters. The first cluster consists of the Corn
Belt, Mountain, Southeast, Pacific and Northeast regions (63.89%−81.67%). The
second cluster consists of Lake States and Appalachian (43.6%− 52.09%).
In terms of cumulative technical inefficiency change, there are diverging trends

among the different regions. Pacific, Northern Plains, Delta States and Northeast
experience a positive cumulative technical inefficiency change between 4.86% and
10.82%. The six remaining regions experience a negative cumulative technical
inefficiency change. Cumulative technical inefficiency change is mildly negative
(between −7.01% and −1.58%) in the Southeast, Corn Belt, Lake States and
Mountain regions. This is worse in the Southern Plains and Appalachian, where
the cumulative technical inefficiency change is−12.96% and−23.61%, respectively.
Again, there are diverging trends for cumulative scale inefficiency change. The

Southern Plains experience the highest increase in cumulative scale inefficiency
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change (15.67%) followed closely by the Appalachian region (15.38%). The Nort-
hern Plains experience a negative cumulative scale inefficiency change (−9.5%).
Between these extremes, the Pacific, Corn Belt, Delta States, Southeast and
Lake States have a positive cumulative scale inefficiency change in the range of
1.29%− 7.56%. In contrast, the cumulative scale inefficiency change of the Nort-
heast and Mountain regions is negative (−6.64% and −7.88%, respectively).
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(a) Average cumulative TFP growth
per region
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ciency change per region

Figure 9. Cumulative TFP growth and its decomposition per U.S.
region using a convex technology

Although all U.S. regions experienced LHM TFP growth in the period 1960 −
2004, this analysis shows that the contribution of the underlying factors varies
considerably per region. Technical change is the main driver of LHM TFP growth
for all U.S. regions. In addition, several U.S. regions partly increased TFP by
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becoming more efficient over time and/or operating at a more optimal scale. Other
regions mainly relied on technical change to increase LHM TFP.

4.4. Discussion. The results depend on the convexity assumption of the techno-
logy. We test the hypothesis whether the distributions of the LHM TFP indica-
tor and its components for FDH and DEA are not significantly different using a
Kolmogorov-Smirnov test. This nonparametrically tests the hypothesis H0 whet-
her two samples are drawn from the same underlying distribution. We conduct the
test for every year separately, resulting in 44 different test hypotheses for every
component. The results at the 10% significance level are presented in Table 5.
For the majority of years, the distributions of the LHMt,t+1 and its components
LOt,t+1 and LIt,t+1 are not statistically different using FDH and DEA. In contrast,
the distributions of ∆T o

t,t+1 are statistically significant for a majority of years and
the distributions of ∆TEIot,t+1 and ∆SECo

t,t+1 under both technologies are signifi-
cantly different for all years. These results in conjunction with Table 3 and Table 4
lead us to the following qualitative conclusions.

LHMt,t+1 LOt,t+1 LIt,t+1 ∆T o
t,t+1 ∆TEIot,t+1 ∆SECo

t,t+1

Reject H0 per year at 10% 9/44 12/44 8/44 25/44 44/44 44/44
Reject H0 at 10% No Yes Yes Yes Yes Yes

Table 5. Results of Kolmogorov-Smirnov test testing equality of
distributions under non-convex and convex technologies

Both results suggest there is substantial LHM TFP growth over the entire period
which is mainly driven by technical progress. Both the DEA and FDH results
indicate that output growth dominates input decline, although this finding is much
more pronounced for the DEA results. A possible explanation for the smaller
contribution of input decline is that some quasi-fixed inputs (e.g. land) are not
constantly adjusted over time or that input reduction is not an objective for some
inputs such as land and labor.
We analyze LHM TFP growth and technical change across time, farm types and

agricultural intensity rates. Table 6 shows the results of the Kolmogorov-Smirnov
test testing equality of distributions for LHM TFP growth rates and technical
changes for consecutive subperiods of eleven years in line with Table 3. Regarding
FDH, all distributions of consecutive LHM TFP growth rates and technical changes
are significantly different at the 10% level. Regarding DEA, the distributions of
the LHM TFP growth rates and technical changes between 1982/93 and 1993/04
are not significantly different at the 10% level, while these are significantly different
comparing the preceding time periods. This suggests that distributional differences
in productivity growth driven by shifts in technology may decrease in importance
throughout time.
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1960/71− 1971/82 1971/82− 1982/93 1982/93− 1993/04
FDH: Reject H0 at 10% LHMt,t+1 Yes Yes Yes
FDH: Reject H0 at 10% ∆Tt,t+1 Yes Yes Yes
DEA: Reject H0 at 10% LHMt,t+1 Yes Yes No
DEA: Reject H0 at 10% ∆Tt,t+1 Yes Yes No

Table 6. Results of Kolmogorov-Smirnov test testing equality of
distributions for LHM TFP growth rates and technical changes for
consecutive time periods

In line with Ang and Kerstens (2016), we assess whether there are distributional
differences in LHM TFP growth rates and technical changes between farm types
in Table 7. We rank the farm regions by the ratio of crop production to total
production considering the whole time period. This leads to a classification of 3
crop regions (Corn Belt, Northern Plains and Pacific), 4 mixed regions (Delta Sta-
tes, Southeast, Appalachian, and Northeast) and 3 livestock regions (Lake States,
Mountain area and Southern Plains). Regarding the FDH results, the distribu-
tions of the LHM TFP growth rates of mixed regions and livestock regions are
significantly different at the 10% level, while these are not significantly different at
the 10% level comparing crop regions to mixed regions and livestock regions. Inte-
restingly, regarding the FDH results, the distributions of the technical changes are
significantly different at the 10% level comparing all types of regions. Regarding
the DEA results, the distributions of the LHM TFP growth rates and technical
changes of crop regions and mixed regions, and mixed regions and livestock regions,
are not significant at the 10% level, while these are significantly different at the
10% level comparing crop regions to livestock regions. In summary, there seems
to be ambiguity in how regional differences in specialization may drive differences
in the distribution of LHM TFP growth and technical changes.

Crops - Mixed Mixed - Livestock Crops - Livestock
FDH: Reject H0 at 10% LHMt,t+1 No Yes No
FDH: Reject H0 at 10% ∆Tt,t+1 Yes Yes Yes
DEA: Reject H0 at 10% LHMt,t+1 No No Yes
DEA: Reject H0 at 10% ∆Tt,t+1 No No Yes

Table 7. Results of Kolmogorov-Smirnov test testing equality of
distributions between farm types for LHM TFP growth rates and
technical changes covering the whole time period

We also assess whether there are distributional differences in LHM TFP growth
rates and technical changes between agricultural intensity rates in Table 8. We
rank the farm regions by the Industry Specialization Index (ISI) for agriculture
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considering 1963− 200415. The U.S. Bureau of Economic Analysis (BEA) compu-
tes the ISI as the agricultural industry’s share of the state-level Gross Domestic
Product divided by the agricultural industry’s share of the U.S. total for the same
statistic. The complete dataset can be found in BEA (2016). We rank the regions
by ISI, which leads to a classification of 3 low ISI regions (Northeast, Lake States
and Southeast), 4 medium ISI regions (Appalachian, Southern Plains, Pacific and
Corn Belt) and 3 high ISI regions (Mountain area, Delta States and Northern
Plains). With respect to the FDH results, comparing distributions of the LHM
TFP growth rates for all groups do not yield any significant difference at the 10%
level. The distributions of the technical changes are significantly different at the
10% level comparing low ISI regions to medium and high ISI regions. Regarding
the DEA results, the distributions of the LHM TFP growth rates and technical
changes are significantly different at the 10% level comparing medium ISI regions
to high ISI regions. Similar to the preceding section, there thus seems to be am-
biguity in how regional differences in agricultural intensity may drive differences
in the distribution of LHM TFP growth and technical changes.

Low - Medium Medium - High Low - High
FDH: Reject H0 at 10% LHMt,t+1 No No No
FDH: Reject H0 at 10% ∆Tt,t+1 Yes No Yes
DEA: Reject H0 at 10% LHMt,t+1 No Yes No
DEA: Reject H0 at 10% ∆Tt,t+1 No Yes No

Table 8. Results of Kolmogorov-Smirnov test testing equality of
distributions between agricultural intensity rates for LHM TFP gro-
wth rates and technical changes covering the whole time period

The contribution of technical inefficiency change to LHM TFP growth is less
clear-cut. Using FDH, technical inefficiency change is virtually nonexistent. Furt-
her inspection reveals that most (contemporaneous) technical inefficiency scores
are zero using FDH. This drives the extremely low technical inefficiency change.
Therefore, these remarkable results may be due to lower discriminatory power of
FDH in this case since there are relatively few observations per year compared
to the number of inputs and outputs. Using DEA, there is a small cumulative
increase in technical inefficiency change.
The results differ more for the scale inefficiency change component. There is

a substantial increase in cumulative scale inefficiency change using FDH, whereas
there is almost no cumulative scale inefficiency change using DEA. Again, this
may be due to the higher discriminatory power of DEA.
Our DEA results are in line with other empirical studies that analyze the TFP

growth in the U.S. agricultural sector using the same data source. Zof́ıo and Lovell

15Data for 1960− 1962 are unavailable.
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(2001), Ball et al. (2010), O’Donnell (2012b) and Ball et al. (2016) also find sub-
stantial TFP growth16. It is driven by technical progress rather than efficiency
change in line with Zof́ıo and Lovell (2001) and Ball et al. (2016). Following
Ball et al. (2016), TFP growth is also due to output growth rather than chan-
ges in the input level.

5. Conclusions

This paper decomposes the additively complete LHM TFP indicator into com-
ponents of technical change, technical inefficiency change and scale inefficiency
change. Our approach is general in that it does not require differentiability or
convexity of the production technology. Using a nonparametric framework, the
empirical application focuses on state-level data of the U.S. agricultural sector
over the period 1960−2004. We compute the scores using FDH and DEA to show
the flexibility of our decomposition and to investigate the potential issue of non-
convexities in the agricultural sector. Furthermore, we analyze LHM TFP growth
and technical change across time, farm types and agricultural intensity rates.
The FDH results show that LHM TFP has increased by 78.61% in the consi-

dered period. This is due to output growth (+44.10%) as well as input decline
(−34.51%). Technical change (+130.57%) and scale inefficiency change (−60.63%)
are the main drivers, while technical inefficiency change (−0.32%) only plays a mi-
nor role.
Following the DEA results, LHM TFP has increased by 70.46% for the conside-

red period. This productivity growth is due to output growth (+62.98%) rather
than changes in the input level (−7.47%). Technical change is the main dri-
ver (+70.55%), while technical inefficiency change (−1.99%) and scale inefficiency
change (+0.42%) only play a minor role.
The results thus depend on whether we use FDH or DEA. Although this may

partly be driven by the underlying true production technology, we note that FDH
may result in too low discriminatory power to compute the distance functions
given the relatively low number of observations for the number of variables in this
application.
Following the Kolmogorov-Smirnov tests, there seem to be differences in the dis-

tributions of LHM TFP growth and technical change across time, farm types and
agricultural intensity rates. We suspect that policy instruments and factor endo-
wments (e.g. soil and weather conditions) may drive differences across time, farm
types and agricultural intensity rates, potentially resulting in differing distributi-
ons in LHM TFP growth and technical change. For instance, agricultural support
payments with restrictions on land use (Just and Kropp, 2013) and ethanol subsi-
dies (Motamed et al., 2016) likely have an impact on geographical specialization.

16Zof́ıo and Lovell (2001) only analyze TFP growth over the period 1960− 1990.
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This information would be relevant for policy makers. Such an empirical investi-
gation is left for future research.
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Appendix A. Managi (2010)’s decomposition

Managi (2010) decomposes the Luenberger-Hicks-Moorsteen indicator into techni-
cal change (TC):

TC =
[

Dt+1(xt+1,yt+1; (g
i
t+1, 0))−Dt(xt+1,yt+1; (g

i
t+1, 0))

]

−
[

Dt+1(xt+1,yt+1; (0,g
o
t+1))−Dt(xt+1,yt+1; (0,g

o
t+1))

]

,

and the residual being efficiency change (EC):

EC =
1

2

{

Dt(xt,yt; (0,g
o
t ))−Dt(xt,yt+1; (0,g

o
t+1))

− Dt(xt+1,yt; (g
i
t+1, 0)) +Dt(xt,yt; (g

i
t, 0))

+ Dt+1(xt+1,yt; (0,g
o
t )) +Dt+1(xt+1,yt+1; (0,g

o
t+1))

− Dt+1(xt+1,yt+1; (g
i
t+1, 0)) +Dt+1(xt,yt+1; (g

i
t, 0))

}

−Dt(xt+1,yt+1; (0,g
o
t+1))−Dt+1(xt+1,yt+1; (g

i
t+1, 0)) +Dt(xt+1,yt+1; (g

i
t+1, 0))

However, this decomposition is incomplete. First, it lacks a scale (in)efficiency
change component. Second, there is no reason for TC to be defined as a difference
between an output-oriented technical change component and an input-oriented
technical change component. Furthermore, TC is only defined with respect to
observations in period t + 1, although there is no clear reason to favor those to
observations in period t. Finally, the EC component does not capture technical
(in)efficiency change.

Appendix B. Decomposition using the input direction

The decomposition using the input direction is:

(B.1) LHMt,t+1 = ∆T i +∆TEI i +∆SEC i,

representing technical change, technical inefficiency change and scale inefficiency
change, respectively.
The technical change component is defined as:

∆T i =
1

2

{[

Dt+1(xt,yt; (g
i
t, 0))−Dt(xt,yt; (g

i
t, 0))

]

+
[

Dt+1(xt+1,yt+1; (g
i
t+1, 0))−Dt(xt+1,yt+1; (g

i
t+1, 0))

]}

,(B.2)

and the same interpretation as before. Technical inefficiency change is:

∆TEI i = Dt(xt,yt; (g
i
t, 0))−Dt+1(xt+1,yt+1; (g

i
t+1, 0)).(B.3)
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From the residual

LHMt,t+1−∆T i −∆TEI i =(B.4)

1
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o
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]}

,

we recover the scale inefficiency change component in a similar way as before.
Define the projections of xt and xt+1 on the production frontier at time t:

x∗
t = xt −Dt(xt,yt; (g

i
t, 0))g

i
t(B.5a)

x∗∗
t+1 = xt+1 −Dt(xt+1,yt+1; (g

i
t+1, 0))g

i
t+1,(B.5b)

and the projections of xt and xt+1 on the production frontier at time t+ 1:

x∗∗
t = xt −Dt+1(xt,yt; (g

i
t, 0))g

i
t(B.6a)

x∗
t+1 = xt+1 −Dt+1(xt+1,yt+1; (g

i
t+1, 0))g

i
t+1.(B.6b)

Respectively adding and subtractingDt(xt,yt; (g
i
t, 0)) andDt+1(xt+1,yt+1; (g

i
t+1, 0))

to and from (B.4), and using the translation property of the directional distance
function and the definitions of the projections above, we find the scale inefficiency
change component:
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1

2
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Appendix C. State-level TFP figures

This appendix includes the LHM TFP indicator and its components per agri-
cultural region. Each figure is constructed by averaging over all states in that
particular agricultural region in every year.

C.1. Convex technology.
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Figure C.1. Cumulative LHM TFP indicator and its components per agricultural region under a
convex technology
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Figure C.1. Cumulative LHM TFP indicator and its components
per agricultural region under a convex technology

C.2. Non-convex technology.
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Figure C.2. Cumulative LHM TFP indicator and its components per agricultural region under a
non-convex technology
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Figure C.2. Cumulative LHM TFP indicator and its components
per agricultural region under a non-convex technology


	1. Introduction
	2. The Luenberger-Hicks-Moorsteen TFP indicator
	3. Decomposition of the Luenberger-Hicks-Moorsteen indicator
	4. Empirical application: U.S. agriculture
	4.1. Data description
	4.2. Non-convex technology
	4.3. Convex technology
	4.4. Discussion

	5. Conclusions
	References
	Appendix A. Managi (2010)'s decomposition
	Appendix B. Decomposition using the input direction
	Appendix C. State-level TFP figures
	C.1. Convex technology
	C.2. Non-convex technology


