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Abstract

This manual provides a quick guide to using the NPRLab toolbox. It guides the
user to all the basic steps in order to preprocess, estimate and plot nonparametric
kernel estimators with NPRLab.

1 Introduction

NPRLab - NonParametric Regression Laboratory for MATLAB - is a toolbox to quickly
run nonparametric regressions.1 It is a spin-off of code written during my master thesis
in mathematical engineering at KU Leuven in 2012. NPRLab is devised as a toolbox
built around LS-SVMlab and as such it works very similar to LS-SVMlab.2 In fact, users
familiar with LS-SVMlab might only need a quick glance at this manual to get started.
For all others this quickguide should walk you through the basic steps to get started.

Throughout, we assume the following data generating process:

Yi = m(Xi) + εi, (1)

∀i = 1, . . . , n with Xi ∈ Rd, Yi ∈ R and εi ∼ N (0, σ2). Note that we assume homoscedas-
tic noise. NPRLab implements a class of “linear smoothers”. An estimator m̂n(X) is a
linear smoother if, for each X there exists a vector l(x) = (l1(X), . . . , ln(X))T such that

m̂n(X) =

n∑
i=1

li(X)Yi. (2)

Denote the fitted values by Ŷ = (m̂n(X1), . . . , m̂n(Xn))T and Y = (Y1, . . . , Yn)T . We
can then write the above as

Ŷ = LY,

where L is a n × n smoother matrix with Lij = lj(Xi). The form and construction of
the smoother matrix depends on the specific nonparametric estimator. The class of lin-
ear smoothers is large and includes Nadaraya-Watson, Priestley-Chao, local polynomial
regression, LS-SVM, penalized spline estimators, etc. Some of these are implemented in
the toolbox, but others can easily be added by the user.

1NPRLab is freely available at http://kerstens.hopto.org/nprlab/ under the GNU GPL v3.
2LS-SVMlab is freely available at http://www.esat.kuleuven.be/sista/lssvmlab/.
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2 Data preprocessing and estimation

We assume that a dataset is loaded into MATLAB containing a n × d matrix X and a
n × 1 vector Y. Assuming the data needs no preprocessing, we initiate and train the
model writing:

% Initialize and train a Nadaraya -Watson model

model = initnpr(X,Y,'nadaraya watson ','original ');

The fitted model is returned in a structure called model. In the above example,
we have fitted a Nadaraya-Watson model. This can be changed by replacing the string
’nadaraya watson’ with one found in Table 1. In fact, the toolbox determines the
selected smoother by comparing only the first two letters of the string. This is indicated
by the third column in Table 1.

smoother name string shorthand

Nadaraya-Watson ’nadaraya watson’ ’na’

Priestley-Chao ’priestley-chao’ ’pr’

Local polynomial regression ’local polynomial’ ’lo’

LS-SVM ’ls-svm’ ’ls’

Table 1: Available linear smoothers

In some cases, better estimation results are obtained by normalizing the data: X and
Y are transformed to have zero mean and unit variance. This can be done by replacing
’original’ by ’preprocess’ in the above code.

Now that the model is fitted, we can estimate it by

% Estimate the fitted model on a test vector X

Yhat = simnpr(model ,X);

The vector Yhat contains the fitted values as in (2). Similarly, one can pass a different
vector Xt to simnpr instead of X.

3 Data plotting

Once the model is fitted on the data, we can plot the resulting estimator together with
the data and the underlying function (if available). Suppose we know the true underlying
function m(Xi) which we represent by Ytrue. We can now plot both Ytrue and the fitted
model by:

% Plot the trained model together with the true underlying

function

plotnpr(model ,[], Ytrue);

In case we do not know Ytrue, we only plot the fitted model by
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% Plot the trained model

plotnpr(model);

The data is plotted in blue, the fitted model in red and the true underlying function
in green.

4 Confidence band estimation

Suppose we have an estimator m̂n for our model m. One may wonder: How good is
this estimate? The problem of finding confidence bands for an estimator addresses this
question. In particular, given α ∈ (0, 1) we look for a bound gα such that

P
[
sup
x
|m̂n(x)−m(x)| ≤ gα

]
≥ 1− α (3)

at least for large samples. In words: we look for a bound gα such that with a probability
of at least 1 − α our true function lies entirely within this bound. This bound gα
is computed using the volume-of-tube approximation as proposed by Sun and Loader
(1994) and implemented in the toolbox. The general idea is that we construct a tube
around the estimator and then search the minimal width c of this tube such that m̂n

satisfies (3). In a one-dimensional setting with d = 1, we look for a c that satisfies

α ≈ κ0
π

(
1 +

c2

ν

)−ν/2
+
ζ0
2
P(|tν | > c) (4)

for a given α and with tν a t-distributed random variable with ν = n − tr(L) degrees
of freedom. κ0 and ζ0 are geometric constants. κ0 can be computed using quasi-Monte
Carlo integration and ζ0 = 2 in a one-dimensional setting.

The extension to a multi-dimensional setting (i.e. d > 1) is more complicated and is
given by:

α ≈ κ0
Γ((d+ 1)/2)

π(d+1)/2
P
(
Fd+1,ν >

c2

d+ 1

)
+
ζ0
2

Γ(d/2)

πd/2
P
(
Fd,ν >

c2

d

)
+
κ2 + ζ1 +m0

2π

Γ((d− 1)/2)

π(d−1)/2
P
(
Fd−1,ν >

c2

d− 1

)
(5)

with Γ the Gamma function, F the F -distribution with 2 parameters and ν = tr((I −
L)(I −L)T )2/tr(((I −L)(I −L)T )2). Again, we search for c that satisfies (5) for a given
confidence level α and the geometric constants κ0, ζ0, κ2, ζ1 and m0 can all be computed
using quasi-Monte Carlo integration techniques. We refer the interested reader to Sun
and Loader (1994) for details.

The main computational burden is the computation of the geometric constants. The
toolbox takes advantage of the parallel nature of the computations and computes these
in parallel when the Parallel Computing toolbox is installed. Sun and Loader (1994)
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have found that not all terms of the sum in (5) are equally important. In particular, the
2nd term involving ζ2 and the 3rd term with κ2, ζ1 and m0 are less important when the
bandwidth h is small. This result has also been verified empirically by Kerstens (2012).

Confidence bands are then constructed by

m̂n(x)± (c+ δ)
√

Vx,

with c the solution of (4) or (5) depending on d, δ a bias correction computed by
undersmoothing and Vx the estimated variance of the linear smoother.

Computation and plotting of the confidence bands by the toolbox is now done by
the commands

% Compute 100*(1 - alpha)% confidence bands by volume -of-tube

approximation

ci = cinpr(model ,alpha);

% Plot the trained model together with the true underlying

function and

% confidence bands

plotnpr(model ,ci ,Ytrue);

5 Adding custom linear smoother

Custom written linear smoothers by the user can easily be added to the toolbox as
follows. The custom linear smoother must accept the following parameters:

1. X,Y: the data to fit containing n data points,

2. newX: a nX × d matrix of evaluation points,

3. h: a bandwidth parameter of the kernel function.

Furthermore, the custom linear smoother must return:

1. newY: a nX × 1 vector of fitted points evaluated at newX,

2. L: a nX × n smoother matrix as in (2),

3. h: the same bandwidth parameter of the kernel function.

A custom linear smoother, called ’mylinearsmoother’, is represented by a .m file
of the form:

function [newY ,L,h,varargout] = mylinearsmoother(X,Y,newX ,h,

varargin)

% Implementation of 'mylinearsmoother '

end

and added to the toolbox by placing it in the addins subfolder. No additional steps
are needed.
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6 Concluding remarks

We hope that by reading to the end of this quickguide, the user has enough information
concerning the working of the toolbox to get started. Every *.m file of this toolbox
contains more detailed information regarding its use and we hope that this together
with this quickguide allows the user to explore the more advanced possibilities of the
toolbox.
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